

Adaptive Threat Detection Method Based on the

Operating System Audit Subsystem

Valerii Simonenko

Department of Computer Engineering

National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute”

Kyiv, Ukraine

0000-0002-6341-6041

Anna Verner

Department of Computer Engineering

National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute”

Kyiv, Ukraine
0000-0001-8598-363X

Abstract — There is a continuous exponential increase in
the total number of malicious software for the last decade
leading to the computing nodes integrity breach. Existing
means are incapable of effective threats countering. Therefore,
the problem is the invention of the adaptive method for threat
detection. The article considers an adaptive method of security
threat detection based on the operating system audit
subsystem. The method uses audit subsystems as a means of
monitoring the processes and system calls, they make in the
system. The classifier is implemented using a neural network
represented as a multilayer Rosenblatt perceptron. Training of
the model was performed by the usage of a dataset consisting
of system calls sequences received as a result of malicious
software samples execution. The suggested method
effectiveness in the detection of harmful impact is proven on
the results of model testing on independent samples of malware
and benign software.

Keywords — operating system audit subsystem, neural

network, malware detection, information security, data integrity

I. INTRODUCTION

The rapid development of computing technologies has
almost changed all areas of the present. The integration of
information technology led to a significant increase in the
productivity and improvement of the whole human
activities. However, as a result of global digitalization, the
variety and number of dangers that affect the integrity of
information systems are significantly increasing [1].
Material damages caused by malicious software are
estimated to be billions of dollars [2]. That leads to the need
for end nodes protection strengthening and the invention of
new adaptive security means.

Among the means of information protection, the most
widespread are hardware, software, and hardware and
software. The last is the most versatile and flexible since
they are reconfigurable for any system and architectures
types, which is relevant due to the active spread of the
Internet of Things (IoT). It is this sector of devices that is
one of the most vulnerable and is increasingly used to carry
out targeted attacks [3]. However, desktop personal
computers are still the leaders in the number of existing
malicious software.

The paper suggests an adaptive threat detection method
to improve the security of a computing node, based on the
use of the operating system audit subsystem.

The intended usage of the audit framework is to monitor
events in real-time (while the system is running) or
periodically [4]. This component is built-in in most modern

operating systems (OS). Recent scientific works [5], [6]
demonstrate the effectiveness of these means used to detect
the presence of external influence on the information
system. However, such analysis, in general, is purely
diagnostic in nature and performed only when malicious
actions have already been carried out against the computing
node.

The offered method for identifying the security threats of
a node uses a wide range of capabilities provided by the
audit system by using an integrated kernel component to
control the processes occurring in the system. That allows
preventing malicious software from the execution in the
early steps providing the ability to keep data integrity intact.

II. THREATS ANALYSIS METHODS

Various code analysis methods are used to detect
malware. By the execution, methods of threat detection are
separated into two parts: dynamic and static analysis.

A. Static Analysis

Static analysis stands for the analysis of malicious
software without its execution. Detection patterns used in
the static analysis include string signatures, byte sequences,
n-grams, library syntax calls, control flow graphs, frequency
code analysis of operational codes, and more. The analysis
is performed due to the pre-unpacking and decoding of the
executable file to represent the malware in a different format
by using reverse engineering and other means.

Disassemblers and debuggers commonly used in reverse
engineering allow displaying the malicious software code in
the form of assembly instructions, which provides a lot of
information about what exactly malware does, and also
helps to identify patterns to identify attackers. Memory
dumping tools are used to retrieve protected code stored in
system memory and dump it to a file. This technique is
useful for analyzing packaged executables that are difficult
to disassemble. Binary obfuscation methods convert
malicious binary files into self-compressed and uniformly
structured files. They are designed to withstand change and
learning and don't allow for qualitative analysis. Besides, in
the usage of binary executable files for static analysis,
information such as the size of data structures or variables is
lost, further complicating the analysis of software code,
accordingly to [7].

Sophisticated methods of evasion of static analysis by
attackers have led to the need for dynamic analysis
developing. In [8] highlighted the shortcomings of the static

analysis methodology and introduced a scheme based on
code obfuscation, which proves the inadequacy of static
analysis for malware detection or classification. According
to that research, dynamic analysis is a necessary
complement to static analysis because it is less vulnerable to
obfuscation.

B. Dynamic Analysis

Dynamic malware analysis involves the analysis of the
program during its execution [9] by running malware in a
secure and controlled environment to avoid transferring the
malware under investigation to other systems or networks.
The main dynamic analysis includes observation of the
collected sample and its interaction with the system.
Snapshots of the virtual machine's initial state are taken,
after which the malware runs for execution in the test
system. Output and input states are compared for change
detection. The changes obtained from the observations are
then used as key features to remove and detect threats and
its software from infected nodes.

Dynamic analysis is an important step in threats
analysis, although it does not provide comprehensive
information on malware [10]. Advanced dynamic analysis
involves the usage of tools for studying the state of a
malicious program during its launch. The usage of advanced
analysis methods provides information that cannot be
collected using other methods [11]. Dynamic analysis is
always performed in an isolated environment to ensure that
all inputs and outputs of the system are known for further
consideration.

The usage of additional tools allows tracking of the
APIs, system function calls, modified and deleted files,
registry changes during the interaction with the system.
Analyzing the parameters used during function calls allow
to group the functions used semantically while analyzing the
data processed and distributed in the system giving an
understanding of the files used and produced by the
malware [12]. Advanced dynamic malware analysis is very
useful for detecting malicious software variants.

The particularities of each analysis method have to be
indicated. Dynamic analysis systems execute binaries in a
virtualized environment to record the behavior of the
sample, looking for indicators of malicious activity. On the
other hand, static parsers process executable files without
running them, extracting the features used for classification
directly from the binaries and their metadata. Although both
approaches have positive and negative aspects, many
endpoint security solutions are usually solved precisely by
static analyzers due to the strict time constraints required to
avoid affecting system performance.

C. Behavior-Based Approach

Dynamic analysis includes an approach based on
analyzing the behavior of malicious software. Such an
approach is used in the suggested paper during the
development of an adaptive method of threat detection. The
behavioral-based approach allows detecting a large number
of existing malwares also providing the ability to detect new
types and samples of malware. However, it is not universal.
Therefore, there is a need to find a method that effectively
detects more complex, unknown programs.

The behavioral approach for detecting malware adheres
to the behavior of the program using monitoring tools and

determines whether the program is malicious. Despite the
change in program code, the behavior remains similar, thus
allowing the application of this approach to identify most
new malware [13]. However, some malware programs do
not work properly in a virtual environment, and therefore, a
sample of malware may become false positive. The
monitoring of system calls is used as a basis of a behavioral-
based approach in the proposed adaptive threads detection
method. The behavioral analysis consists of a few steps. Its
algorithm is shown in Figure 1.

Malware Benign

Decision making mechanism

Classifier

 Training Testing

Executable files

Features selection and extraction

Process execution monitoring

Fig. 1. Behavioral-based approach algorithm [14]

After running the executable file, monitoring of its
spawned processes begins. While monitored processes are
being executed the service data capturing is performed.
These data are being taken to a separate set that is then
filtered by extracting only the key features necessary for
further classification. On the final stage, the obtained
reduced dataset is passed to the inputs of the classifier,
which makes the decision on its maliciousness degree
according to the input sequence and pre-trained patterns.

III. ADAPTIVE THREAT DETECTION METHOD BASED ON THE

AUDIT SUBSYSTEM

The proposed method is based on the usage of two main
components: operating system audit subsystem and deep
learning model.

A. Audit Subsystem

The audit subsystem is a built-in component in modern
operating systems. Thus, in the most popular desktop
operating system Windows, it is implemented as Event
Tracing (ETW) - a software interface for tracing at the
kernel level, which allows recording not only kernel events
but also applications system calls in a specialized log file in
real-time and provides the ability to further usage of data for
applications configuration and instant problems
identification [15].

The structure and principles of the audit subsystem can
be explored on the basis of operating systems with the Linux
kernel.

The general purpose of the audit subsystem is to obtain
detailed information on the status of system processes that

comply with appropriate policies and to log any types of
events in real-time mode (monitoring file access, system
calls, recording user commands, recording security events,
event search, etc.). Data acquisition is carried by passing
each process through the filter system of the audit
subsystem. Scheme of audit subsystem architecture and
system calls from user space implementation is shown in
Figure 2.

Kernel

User

filter

Task

filter

Exclude

filter

Entry

filter

Exit

filter

System call

Audit daemon

Application

Fig. 2. Audit system architecture [16]

B. Threat Detection Method Structure

The presence of a layer in the form of an audit kernel
module allows building a universal tool for intercepting and
managing system calls and processes, as well as provides
the ability to collect data needed for further use in the
analysis of system activity for threats detection.
Accordingly, it is mandatory to provide the audit subsystem
with the ability to record the following data: date and time
of the event, type of event, entity ID, a result of actions;
association of the event with the identity of the user who
caused it; all attempts to modify the audit subsystem
configuration files and access the logs; use of authentication
mechanisms; changes in trusted sources and databases;
attempts to import and export information. It is also
significant to enable or exclude events based on user ID,
object labels, and other attributes.

To perform an analysis of the system work based on the
captured data the use of an analyzer built with the means of
neural networks is proposed. This approach allows the
creation of a system capable of self-learning and its further
accuracy improvement through the analysis of new threats
by using data from knowledge bases and gaining
experience. The advantage of this approach is the relative
resistance to zero-day attacks.

The interception of all system calls that occur in the
system has a significant impact on system performance.
Therefore, to improve the utilization of system resources, it
is proposed to perform further tracing only for calls that
excite the analyzer triggers, as shown in Figure 3.

It is necessary to create a list of trusted applications that
have access to the knowledge database and log files of the
audit subsystem for its update and modification (among
them should be singled out service applications that are

included in the list of system utilities and daemons required
for normal system functioning).

System call

initialization

End

0

1System

calls tracing

activated

0

1

Audit information

gathering

Audit

enabled

Fig. 3. Audit information gathering

According to this algorithm, the need for logging is
determined only if the current entity complies with the audit
policy.

C. Classifier model

The system calls classifier model is based on the usage
of deep learning methods that allow identifying the features
according to the statistical structure of the input data. The
problem of determining system calls is solved by the
application of an approach commonly used in the text
classification preventing the influence of the data order and
allowing to determine the harmfulness of the sample
according to the existing context. The feedforward neural
network, namely the Rosenblatt perceptron, is chosen as a
network model. Learning in such a network is carried out by
applying the backpropagation method to minimize the
standard error of the network in the training sample. The
main building blocks are layers of data processing modules
that can be considered as data filters. The inputs of the
layers receive data (tensors). The network structure is shown
in the Figure 4.

L11

L12

L1n

.
.

.

y

.
.

.

x1

x2

x3

xn

xn+1

xm

.
.

.
.
.

.

L21

L22

L2n

Output layerInput layer Hidden layer 2Hidden layer 1

Fig. 4. Neural network architecture

The selected neural network model contains three
sequentially fully connected (Dense) layers: the first two
contain the same number of neurons and the output layer
consists only of one neuron for binary classification
implementation.

IV. MODELING

A. Preconditioning

The malware samples were collected on the Internet to
create training and test data sets. As no permitted databases
are containing malicious software, the search was carried
out on public platforms. The bash-script was developed for
automation data gathering during the execution of malicious
and benign software in an isolated environment. The script
was also used to clean captured log files from redundant
data. The total number of system calls gathered during
automated processes execution is given in table 1.

TABLE I. THE NUMBER OF SYSTEM CALLS IN THE GATHERED DATA

Total number Benign system calls Malware system calls

6 233 791 917 272 5 316 519

The classifier model was launched to test the adaptive
threat detection method based on the operating system audit
subsystem data capturing mechanism. The modeling results
are shown in Figure 5.

Fig. 5. Modeling accuracy plot

The graph obtained in the process of work demonstrates
the correctness of the proposed method. According to the
results gained on the test set, the accuracy of malware
detection increases from 43% to 90%.

As a result of method work modeling, positive results
were obtained on the recognition of threats by performing
an analysis of the records of system calls captured during
the execution of malicious and benign samples.

CONCLUSIONS

The presence of malicious software high amounts leads
to material damages to both, large corporations and society

as a whole. There is a strong need for new analysis methods
invention to protect information systems.

The results of the suggested study indicate the possibility
of the proposed method application as a part of security
means in modern protection systems.

The adaptive threat detection method has its advantages
and disadvantages. The main benefit is the usage of a built-
in tool in the form of an audit subsystem as an interception
system for controlling events, so there is no need to develop
an additional mechanism for interaction with system calls.
As disadvantage should be considered the increment of
influence on the system's productivity. Therefore, further
researches are needed to eliminate this shortcoming and
optimize algorithm work.

REFERENCES

[1] 2020 State of Malware. Last accessed: 12-Sep-2020. [Online].
Available: https://resources.malwarebytes.com/files/2020/02/2020_St
ate-of-Malware-Report. pdf

[2] 110 Must-Know Cybersecurity Statistics for 2020. Last accessed: 28-
Sep-2020. [Online]. Available: https://www.varonis.com/blog/cyberse
curity-statistics/

[3] Internet of Things statistics for 2020 – Taking things apart. Last
accessed: 28-Sep-2020. [Online]. Available: https://dataprot.net/statis
tics/iot-statistics/

[4] Sobers R. 10 Must-Know Cybersecurity Statistics for 2020. Last
accessed: 30-Sep-2020. [Online]. Available: https://blogvaronis2.
wpengine.com/cybersecurity-statistics/.

[5] Yu H. Needle in a Haystack: Attack Detection from Large-Scale
System Audit / H. Yu, A. Li, R. Jiang. // IEEE 19th International
Conference on Communication Technology (ICCT). – 2019. – С.
1418–1426.

[6] Bates J. Analysis of Computer Audit Data to Create Indicators of
Compromise for Intrusion Detection / J. Bates, S. Millett, M. Toolin.
// DATASCIENCEREVIEW. – 2019. – №2.

[7] Raghuraman C. Static and dynamic malware analysis using machine
learning / C. Raghuraman, S. Suresh, S. Shivshankar. // First
International Conference on Sustainable Technologies for
Computational Intelligence. – 2020. – С. 793–806

[8] Arora A. Permpair: Android malware detection using permission
pairs / A. Arora, K. Peddoju, M. Conti. // IEEE Transactions on
Information Forensics and Security. – 2019.

[9] Casey E. Malware Forensics: Investigating and Analyzing Malicious
Code / E. Casey, J. Aquilina, C. Malin. // Syngress. – 2008.

[10] Eilam E. Reversing: secrets of reverse engineering / E. Eilam, E.
Chikofsky. – Indianapolis: Wiley, 2005

[11] Sikorski M. Practical Malware Analysis / M. Sikorski, A. Honig. //
Network Security. – 2012. – №12. – С. 4–12.

[12] A survey on automated dynamic malware-analysis techniques and
tools / M.Egele, T. Scholte, E. Kirda, C. Kruegel. // ACM Comput.
Surv. CSUR. – 2012. – №44. – С. 6.

[13] Aslan Ö. Investigation of possibilities to detect malware using
existing tools / Ö. Aslan, R. Samet. // IEEE/ACS 14th Int. Conf.
Comput. Syst. Appl. (AICCSA). – 2017.

[14] ASLAN Ö. A Comprehensive Review on Malware Detection
Approaches / Ö. ASLAN, R. SAMET. // IEEE Access. – 2020. – №8.
– С. 6249–6271.

[15] Event Tracing. Last accessed: 5-Oct-2020. [Online]. Available:
https://docs.microsoft.com/en-us/windows/win32/etw/event-tracing-
portal.

[16] CHAPTER 7. SYSTEM AUDITING. Last accessed: 30-Sep-2020.
[Online]. Available: https://access.redhat.com/documentation/en-us/re
d_hat_enterprise_linux/6/html/security_guide/chap-system_auditing

