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Abstract — There is a continuous exponential increase in 
the total number of malicious software for the last decade 
leading to the computing nodes integrity breach. Existing 
means are incapable of effective threats countering. Therefore, 
the problem is the invention of the adaptive method for threat 
detection. The article considers an adaptive method of security 
threat detection based on the operating system audit 
subsystem. The method uses audit subsystems as a means of 
monitoring the processes and system calls, they make in the 
system. The classifier is implemented using a neural network 
represented as a multilayer Rosenblatt perceptron. Training of 
the model was performed by the usage of a dataset consisting 
of system calls sequences received as a result of malicious 
software samples execution. The suggested method 
effectiveness in the detection of harmful impact is proven on 
the results of model testing on independent samples of malware 
and benign software. 
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I. INTRODUCTION  

The rapid development of computing technologies has 
almost changed all areas of the present. The integration of 
information technology led to a significant increase in the 
productivity and improvement of the whole human 
activities. However, as a result of global digitalization, the 
variety and number of dangers that affect the integrity of 
information systems are significantly increasing [1]. 
Material damages caused by malicious software are 
estimated to be billions of dollars [2]. That leads to the need 
for end nodes protection strengthening and the invention of 
new adaptive security means. 

Among the means of information protection, the most 
widespread are hardware, software, and hardware and 
software. The last is the most versatile and flexible since 
they are reconfigurable for any system and architectures 
types, which is relevant due to the active spread of the 
Internet of Things (IoT). It is this sector of devices that is 
one of the most vulnerable and is increasingly used to carry 
out targeted attacks [3]. However, desktop personal 
computers are still the leaders in the number of existing 
malicious software.  

The paper suggests an adaptive threat detection method 
to improve the security of a computing node, based on the 
use of the operating system audit subsystem.  

The intended usage of the audit framework is to monitor 
events in real-time (while the system is running) or 
periodically [4]. This component is built-in in most modern 

operating systems (OS). Recent scientific works [5], [6] 
demonstrate the effectiveness of these means used to detect 
the presence of external influence on the information 
system. However, such analysis, in general, is purely 
diagnostic in nature and performed only when malicious 
actions have already been carried out against the computing 
node.  

The offered method for identifying the security threats of 
a node uses a wide range of capabilities provided by the 
audit system by using an integrated kernel component to 
control the processes occurring in the system. That allows 
preventing malicious software from the execution in the 
early steps providing the ability to keep data integrity intact. 

II. THREATS ANALYSIS METHODS 

Various code analysis methods are used to detect 
malware. By the execution, methods of threat detection are 
separated into two parts: dynamic and static analysis.  

A. Static Analysis 

Static analysis stands for the analysis of malicious 
software without its execution. Detection patterns used in 
the static analysis include string signatures, byte sequences, 
n-grams, library syntax calls, control flow graphs, frequency 
code analysis of operational codes, and more.  The analysis 
is performed due to the pre-unpacking and decoding of the 
executable file to represent the malware in a different format 
by using reverse engineering and other means. 

Disassemblers and debuggers commonly used in reverse 
engineering allow displaying the malicious software code in 
the form of assembly instructions, which provides a lot of 
information about what exactly malware does, and also 
helps to identify patterns to identify attackers. Memory 
dumping tools are used to retrieve protected code stored in 
system memory and dump it to a file. This technique is 
useful for analyzing packaged executables that are difficult 
to disassemble. Binary obfuscation methods convert 
malicious binary files into self-compressed and uniformly 
structured files. They are designed to withstand change and 
learning and don't allow for qualitative analysis. Besides, in 
the usage of binary executable files for static analysis, 
information such as the size of data structures or variables is 
lost, further complicating the analysis of software code, 
accordingly to [7]. 

Sophisticated methods of evasion of static analysis by 
attackers have led to the need for dynamic analysis 
developing. In [8] highlighted the shortcomings of the static 



analysis methodology and introduced a scheme based on 
code obfuscation, which proves the inadequacy of static 
analysis for malware detection or classification. According 
to that research, dynamic analysis is a necessary 
complement to static analysis because it is less vulnerable to 
obfuscation. 

B. Dynamic Analysis 

Dynamic malware analysis involves the analysis of the 
program during its execution [9] by running malware in a 
secure and controlled environment to avoid transferring the 
malware under investigation to other systems or networks. 
The main dynamic analysis includes observation of the 
collected sample and its interaction with the system. 
Snapshots of the virtual machine's initial state are taken, 
after which the malware runs for execution in the test 
system. Output and input states are compared for change 
detection. The changes obtained from the observations are 
then used as key features to remove and detect threats and 
its software from infected nodes.  

Dynamic analysis is an important step in threats 
analysis, although it does not provide comprehensive 
information on malware [10]. Advanced dynamic analysis 
involves the usage of tools for studying the state of a 
malicious program during its launch. The usage of advanced 
analysis methods provides information that cannot be 
collected using other methods [11]. Dynamic analysis is 
always performed in an isolated environment to ensure that 
all inputs and outputs of the system are known for further 
consideration.  

The usage of additional tools allows tracking of the 
APIs, system function calls, modified and deleted files, 
registry changes during the interaction with the system. 
Analyzing the parameters used during function calls allow 
to group the functions used semantically while analyzing the 
data processed and distributed in the system giving an 
understanding of the files used and produced by the 
malware [12]. Advanced dynamic malware analysis is very 
useful for detecting malicious software variants. 

The particularities of each analysis method have to be 
indicated. Dynamic analysis systems execute binaries in a 
virtualized environment to record the behavior of the 
sample, looking for indicators of malicious activity. On the 
other hand, static parsers process executable files without 
running them, extracting the features used for classification 
directly from the binaries and their metadata. Although both 
approaches have positive and negative aspects, many 
endpoint security solutions are usually solved precisely by 
static analyzers due to the strict time constraints required to 
avoid affecting system performance. 

C. Behavior-Based Approach 

Dynamic analysis includes an approach based on 
analyzing the behavior of malicious software. Such an 
approach is used in the suggested paper during the 
development of an adaptive method of threat detection. The 
behavioral-based approach allows detecting a large number 
of existing malwares also providing the ability to detect new 
types and samples of malware. However, it is not universal. 
Therefore, there is a need to find a method that effectively 
detects more complex, unknown programs. 

The behavioral approach for detecting malware adheres 
to the behavior of the program using monitoring tools and 

determines whether the program is malicious. Despite the 
change in program code, the behavior remains similar, thus 
allowing the application of this approach to identify most 
new malware [13]. However, some malware programs do 
not work properly in a virtual environment, and therefore, a 
sample of malware may become false positive. The 
monitoring of system calls is used as a basis of a behavioral-
based approach in the proposed adaptive threads detection 
method. The behavioral analysis consists of a few steps. Its 
algorithm is shown in Figure 1. 
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Fig. 1. Behavioral-based approach algorithm [14] 

After running the executable file, monitoring of its 
spawned processes begins. While monitored processes are 
being executed the service data capturing is performed. 
These data are being taken to a separate set that is then 
filtered by extracting only the key features necessary for 
further classification. On the final stage, the obtained 
reduced dataset is passed to the inputs of the classifier, 
which makes the decision on its maliciousness degree 
according to the input sequence and pre-trained patterns. 

III. ADAPTIVE THREAT DETECTION METHOD BASED ON THE 

AUDIT SUBSYSTEM 

The proposed method is based on the usage of two main 
components: operating system audit subsystem and deep 
learning model. 

A. Audit Subsystem 

The audit subsystem is a built-in component in modern 
operating systems. Thus, in the most popular desktop 
operating system Windows, it is implemented as Event 
Tracing (ETW) - a software interface for tracing at the 
kernel level, which allows recording not only kernel events 
but also applications system calls in a specialized log file in 
real-time and provides the ability to further usage of data for 
applications configuration and instant problems 
identification [15].  

The structure and principles of the audit subsystem can 
be explored on the basis of operating systems with the Linux 
kernel. 

The general purpose of the audit subsystem is to obtain 
detailed information on the status of system processes that 



comply with appropriate policies and to log any types of 
events in real-time mode (monitoring file access, system 
calls, recording user commands, recording security events, 
event search, etc.). Data acquisition is carried by passing 
each process through the filter system of the audit 
subsystem. Scheme of audit subsystem architecture and 
system calls from user space implementation is shown in 
Figure 2. 
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Fig. 2. Audit system architecture [16] 

B. Threat Detection Method Structure 

The presence of a layer in the form of an audit kernel 
module allows building a universal tool for intercepting and 
managing system calls and processes, as well as provides 
the ability to collect data needed for further use in the 
analysis of system activity for threats detection. 
Accordingly, it is mandatory to provide the audit subsystem 
with the ability to record the following data: date and time 
of the event, type of event, entity ID, a result of actions; 
association of the event with the identity of the user who 
caused it; all attempts to modify the audit subsystem 
configuration files and access the logs; use of authentication 
mechanisms; changes in trusted sources and databases; 
attempts to import and export information. It is also 
significant to enable or exclude events based on user ID, 
object labels, and other attributes. 

To perform an analysis of the system work based on the 
captured data the use of an analyzer built with the means of 
neural networks is proposed. This approach allows the 
creation of a system capable of self-learning and its further 
accuracy improvement through the analysis of new threats 
by using data from knowledge bases and gaining 
experience. The advantage of this approach is the relative 
resistance to zero-day attacks. 

The interception of all system calls that occur in the 
system has a significant impact on system performance. 
Therefore, to improve the utilization of system resources, it 
is proposed to perform further tracing only for calls that 
excite the analyzer triggers, as shown in Figure 3.  

It is necessary to create a list of trusted applications that 
have access to the knowledge database and log files of the 
audit subsystem for its update and modification (among 
them should be singled out service applications that are 

included in the list of system utilities and daemons required 
for normal system functioning).  
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Fig. 3. Audit information gathering 

According to this algorithm, the need for logging is 
determined only if the current entity complies with the audit 
policy. 

C. Classifier model 

The system calls classifier model is based on the usage 
of deep learning methods that allow identifying the features 
according to the statistical structure of the input data. The 
problem of determining system calls is solved by the 
application of an approach commonly used in the text 
classification preventing the influence of the data order and 
allowing to determine the harmfulness of the sample 
according to the existing context. The feedforward neural 
network, namely the Rosenblatt perceptron, is chosen as a 
network model. Learning in such a network is carried out by 
applying the backpropagation method to minimize the 
standard error of the network in the training sample. The 
main building blocks are layers of data processing modules 
that can be considered as data filters. The inputs of the 
layers receive data (tensors). The network structure is shown 
in the Figure 4. 
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Fig. 4. Neural network architecture 



The selected neural network model contains three 
sequentially fully connected (Dense) layers: the first two 
contain the same number of neurons and the output layer 
consists only of one neuron for binary classification 
implementation. 

IV. MODELING 

A. Preconditioning 

The malware samples were collected on the Internet to 
create training and test data sets. As no permitted databases 
are containing malicious software, the search was carried 
out on public platforms. The bash-script was developed for 
automation data gathering during the execution of malicious 
and benign software in an isolated environment.  The script 
was also used to clean captured log files from redundant 
data. The total number of system calls gathered during 
automated processes execution is given in table 1. 

TABLE I.  THE NUMBER OF SYSTEM CALLS IN THE GATHERED DATA 

Total number Benign system calls Malware system calls 

6 233 791 917 272 5 316 519 

 

The classifier model was launched to test the adaptive 
threat detection method based on the operating system audit 
subsystem data capturing mechanism. The modeling results 
are shown in Figure 5. 

 

Fig. 5. Modeling accuracy plot 

The graph obtained in the process of work demonstrates 
the correctness of the proposed method. According to the 
results gained on the test set, the accuracy of malware 
detection increases from 43% to 90%. 

As a result of method work modeling, positive results 
were obtained on the recognition of threats by performing 
an analysis of the records of system calls captured during 
the execution of malicious and benign samples. 

CONCLUSIONS 

The presence of malicious software high amounts leads 
to material damages to both, large corporations and society 

as a whole. There is a strong need for new analysis methods 
invention to protect information systems. 

The results of the suggested study indicate the possibility 
of the proposed method application as a part of security 
means in modern protection systems. 

The adaptive threat detection method has its advantages 
and disadvantages. The main benefit is the usage of a built-
in tool in the form of an audit subsystem as an interception 
system for controlling events, so there is no need to develop 
an additional mechanism for interaction with system calls. 
As disadvantage should be considered the increment of 
influence on the system's productivity. Therefore, further 
researches are needed to eliminate this shortcoming and 
optimize algorithm work. 
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