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Abstract—Due to advances of artificial intelligence (AI) and
deep learning (DL) techniques, the opportunities for the reliable
medical classification and prediction of some diseases become
possible in recent years. Some predictions made by DL neural
network trained on the huge medical datasets (MD) sometimes
overcome the experts in the field and DL-models can be con-
sidered as useful AI-screening tools and good assistant for the
real doctors. In this context, the proof of authenticity (PoA) of
such deep learning content (DLC) (like datasets, models, etc.) is
very important to realize the origin and evolution of DLC. At
the moment there are no convenient solutions that can provide
history tracking and provenance of DLC. In this paper, we
provide a general framework using Ethereum smart contracts to
track back the provenance and evolution of DLC to its original
source even if the DLC was edited (e.g. DL models were re-
trained or/and datasets were updated) by anonymous authors.
The main principle behind the solution is that if the DLC can
be credibly traced to a trusted or reputable source, the DLC
can then be real and authentic. The solution is proposed in the
healthcare context and for medical DLC, but it can be applied
to any other form of DLC.

Index Terms—blockchain, Ethereum, smart contracts, health-
care, artificial intelligence, deep learning, convolutional network,
lung disease, pneumonia, tuberculosis, COVID-2019.

I. INTRODUCTION

Due to the fast development of the new information tech-
nologies (ITs) healthcare organizations can provide the better
services, but it is related with the challenges of scattered big
data, complex data processing tools, reliability of computer-
aided diagnostics (CADe/CADx) systems, confidentiality and
privacy of patient electronic health record (EHR) data, and
others. The combination of emerging ITs such as artificial
intelligence (including deep learning), decentralized infrastruc-
tures (including blockchain) and distributed computing (in-
cluding cloud computing) allow “consumers” (i.e. healthcare
stakeholders like patients, doctors, hospitals, research labs,
companies, etc.) to unlock the potential of ITs to obtain
significant economic and social returns.

Now, it is crucial to have techniques to detect the reliable
medical deep learning content (DLC) that include medical
datasets, medical meta-information (professional expert label-
ing), models trained on these medical datasets with related
medical meta-information, and so on. Achieving this purpose

is not difficult if there is a credible, secure, and trusted way
to trace the history of DLC. Users should be given access to
a trusted data provenance of the reliable DLC, and be able
to track back an item in history to prove its originality and
authenticity. This mechanism can help assist consumers from
being tricked or lured into believing in unreliable or fake DLC.

Current solutions are available to prove the authenticity of
DLC due to the open-source repositories (like github and
others) and databases (like Kaggle and others). The only
approach currently used consists in the substantial manual
work related with checking the source of DLC at these
repositories or databases. But there are no established methods
for checking the originality of an proprietary or open source
DLC. It is extremely difficult to determine in a credible and
trusted way the true origin of a proposed DLC. A typical
consumer usually uses online search engines to try to find
relevant sources of origin (posts, blogs or reviews) on the DLC
to judge its authenticity. Hence, there is an immense need for a
Proof of Authenticity (PoA) system for online DLC to identify
trusted published sources and therefore be able to combat
fake/unreliable models, medical datasets, meta-information,
etc. Blockchain has the ability to provide immutable data
and transactions in a decentralized distributed ledger [1].
Blockchain applications now are numerous, and the blockhain
technology potentially and actually can disrupt many indus-
tries, for example, digital media [2], health management [4],
IoT [5], AI/DL [3], etc.

Blockchain has capabilities to provide key features that can
be utilized for proving authenticity and originality of digital
assets in a way that is decentralized, highly trusted and secure,
with tamperproof records, logs, and transactions which are
openly accessible to all in case of permissionless blockchain,
or restricted to certain participants in case of permissioned
blockchain. For the reliable medical DLC, the permissionless
or public blockchain is the most suitable. We base our solution
in this paper on the public Ethereum blockchain with smart
contracts to govern and capture the history of transactions
made to the medical DLC.

In this paper, we propose a blockchain-based solution and
a generic framework for the proof of authenticity of the
medical DLC that may include medical datasets, medical meta-



information (professional expert labeling), models trained on
these medical datasets with related medical meta-information,
medical predictions (results of application of the medical
models on the new medical data), etc. Our solution allows for
publicly accessible, trusted, and credible data provenance, with
tracking and tracing history of a published medical DLC. Our
solution focuses on medical DLC, but the solution framework
provided in this paper is generic enough and can be applied to
any other form of DLC as datasets, meta-information, models
trained on these datasets with related meta-information, etc.

The paper contains Section II with description of the related
work, Section III with the general view on the proposed
blockchain-based solution, Section IV with some DLC specific
implementation details, Section V with discussion of the
solution, and Section VI with the final conclusions.

II. STATE OF THE ART AND RELATED WORK

A. Deep Learning in Healthcare Context

Deep Learning (DL), which is considered as a subset
of Artificial Intelligence (AI), has demonstrated significant
successes during the last years supported by rapid evolution
of computational power and the wide availability of massive
new open datasets [6]. Recently, DL has proved to be effective
in many academic and industrial areas, including medical
applications, such as segmentation of anatomical structures,
various abnormality (like tumor) detection, disease classifi-
cation, computer-aided diagnosis, etc [7]. Healthcare become
especially successful field of DL applications due to progress
of medical hardware generating the huge volume of data (for
example, up to 1018 bytes in USA only according to the recent
reports [8]) and storage systems [9]. And the promising results
of medical imaging were demonstrated for computer-aided
diagnostics (CADe/CADx) in dermatology, radiology, oph-
thalmology, and others [9]. DL-based CADe/CADx systems
could play the assistive role for medical experts by offering
second opinions and attracting attention to some suspicious
areas in images. Moreover, sometimes DL-based CADe/CADx
systems can overcome the human experts in some complex
diagnostics procedures. Some examples of the a deep learning-
based computer-aided diagnosis system can be found on the
market, for example, “Dr. Pecker”, which is a medical image
analysis software product [10].

B. Blockchain in Healthcare Context

Blockchain has a range of built-in features (like distributed
ledger, decentralized storage, authentication, security, and im-
mutability) and now has a range practical applications in
many industries, including healthcare. Blockchain applications
in the healthcare sector generally face harder authentication,
interoperability, and record sharing requirements, for example,
stated in the legal requirements, such as Health Insurance
Portability and Accountability Act of 1996 (HIPAA) [11].
Currently blockchain is proposed to be utilized in numerous
healthcare applications for data sharing, access control, health
records, managing an audit trail, supply chain [12], [13],
[14]. The roadmap for a blockchain-assisted decentralized

bionetwork of private healthcare data was proposed to use new
methodologies to drug discovery and precautionary healthcare
[15]. Several existing specific software solutions with their
detailed analysis can be found [14] and briefly outlined below:
Gem Network is designed to share health data through decen-
tralized network with legal issues addressed [16], OmniPHR
proposes the distributed architecture model for scaling up
during sharing the patient records [17], MedRec attempts to
handle the mining incentive problem for sharing the health-
related data [4], [18], pervasive social network (PSN) helps
create the system that handles security of IoT devices [19],
Virtual Resources allow to make persistent data storage that is
safe, secure, and scalable [20], context-driven data logging
approach is focused on adding a level of confidence to
data logging [21], MeDShare aimed on security and data
authentication for sharing the medical data [22], the trial and
precision medicine platform designed for adding integrity and
data access security to medical data [23], Healthcare Data
Gateways application proposes to use the decentralized nature
of blockchain technology to add a level of security and data
integrity while simplifying legal issues [24], a new model of
storing health data using IPFS based off-chain storage, so this
model more decentralized and does not rely on any third-party
providers [25].

C. Deep Learning and Blockchain Integration

Immediately after its appearance, blockchain became an
extremely popular technology in many industries. But, because
blockchain is highly cost effective in eliminating the need
for a centralized authority to govern and verify interactions
and transactions among several participants and also creates
a secure, synchronized and shared timestamped records that
cannot be altered it makes effective combination with AI
technology that needs to address these issues in order to be
even more efficient and adaptable for use in areas that require
confidentiality and decentralization such as medicine [26].

Numerous works were dedicated to combining AI and
blockchain to help solve medical problems. For example,
attempts to integrate blockchain technology with artificial
intelligence were made for cardiovascular medicine [28]. The
new architecture for building large distributed medical data
sets from various distributed resources and different data
sources was proposed to provide the data (given by hospitals,
individual patients or service providers) for DL researches
in medical domain [27]. the concept of framework for AI-
blockchain system for EHR management system was proposed
[29], the specific EHR management system for university
hospital with additional usage of neural networks for diagnose
skin, heart and other diseases to facilitate doctors to make a
diagnosis was considered [30]. The representation of patients’
entire raw EHR records based on the Fast Healthcare Interop-
erability Resources (FHIR) format and deep learning methods
using this representation were proposed to drive personalized
medicine and improve healthcare quality [31].

This work is dedicated to the problem of the medical
DLC provenance which intrinsically appear in the context



of CADe/CADx approaches, when medical personnel should
use numerous medical DLC components and be sure about
reliability of their origin and evolution. This aspect is espe-
cially important in the view of the appearance of automated
machine and deep learning approaches that allow to create the
very useful medical DLC in automated way by independent
and often trustless subsidiaries. This problem did not obtained
enough attention yet, despite several valuable works dedicated
to the similar aspects, but in another contexts. For instance, for
the video deepfake problem, the blockchain-based framework
is proposed for undisputed traceability to the original source
[2]. In another research, the decentralized transfer learning
platform is proposed to allow sharing of DL data and exper-
tise and the sharing mechanism is based on smart contracts
to ensure the intellectual property of an individual remains
protected [3]. That is why this work was inspired by these
approaches [2], [3] and dedicated to the problem of the DLC
provenance in healthcare context by means of blockchain
technologies.

III. GENERAL STRUCTURE OF THE FRAMEWORK

The proposed framework is based on Ethereum blockchain’s
basic principles of transparency and traceability where secure
and trusted history tracking and tracing are provided in a
decentralized manner with no intermediaries or trusted third
parties. This section describes and details our blockchain-
based approach for proof of authenticity (PoA) of medical
DLC. This approach can also be used for other types of DLC
that can contain any kind of multimedia information from
other than medical applications which will be described in
details elsewhere [32].

From the general point of view, the proposed blockchain-
based framework has the following key components (Fig. 1):

• Medical Dataset (Di): It can contain the important med-
ical information as a raw medical data (RDi) (results
of any kind of medical examination) and the related
medical metadata or medical labels (Li) (Fig. 1). The
latter contains information about the actual RDi: related
to the medical device providing the RDi, capture settings,
date and time of capture, as well as logs and manually
added information that the Di “author” (creator) can
add. Every medical dataset Di can be associated with an
Ethereum smart contract that can be created by an author
or consumer on the basis of labeling the raw data, i.e.
Di = L(Li, RDi), where L is some function depicting
raw data labeling process (see below, e.g. in Fig. 4). The
Ethereum address of the author as well as the address of
the smart contract are integral parts of the Di.

• Medical Trained DL Model (Mi): It can contain the raw
model RMi (i.e the description of a DL model archi-
tecture), the related model metadata about the training
dataset and training process (number of epochs, learning
rate schedule, etc.), and model weights trained on the
concrete Di. The raw model RMi contains information
about the actual DL network used: layers, activation
functions, etc. The Mi reflects the trained state of RMi.

Fig. 1. General structure of the proposed blockchain-based framework.

Every model Mi will be associated with an Ethereum
smart contract that can be created by an “author” (DL
model developer here). The Ethereum address of the
author as well as the address of the smart contract are
integral parts of the model Mi.

• Medical Prediction (Pi) or predicted label: It can be result
of application of some medical DL model Mi to some
new raw data RDi with the predicted label (prediction
of its state) Pi. It seems to be that Pi results in creation
of the “new” data Dj , because Pi contains the new raw
data RDi and the newly created Li (labeling as a result
of prediction). But actually Pi cannot become the “new”
data Dj , except for human labeling LH

i (see below, e.g.
in Fig. 4) or its proper characterization by human experts.
Every Pi will be associated with an Ethereum smart
contract that can be created by an author or consumer.
The Ethereum address of the author as well as the address
of the smart contract are integral parts of the Pi.

• IPFS Storage: The DLC are stored on a decentralized,
content-addressable, peer to peer file system such as the
InterPlanetary File System (IPFS) [33]. IPFS generates
a unique hash which is the address of a bundle of files
containing the DLC.

• On-chain Components: After the DLC’s IPFS hash is
created, a smart contract is created by the original author
(owner) on the Ethereum blockchain. The contract has
attributes and variables to capture the DLC details and
author’s information. Variables are also used to store
static information such as the DLC related data as well
as the contract state. In its turn, any edited DLC by a
secondary author will have its own smart contract with a
link to the original DLC. Hence, all edited DLCs of any
original DLC are “child” DLCs and are available in a list



in the original DLC’s smart contract. Therefore, a user
who would like to trace a DLC to its origin can easily
do so using the on-chain components such as the smart
contract which has the list of all the children DLC’s smart
contracts as well as a link to their parent’s smart contract.

• ENS: A user can also make use of the Ethereum Name
Service (ENS) [34] to associate Ethereum address of
authors/consumers to a human-readable texts capturing
the author/consumer’s real identity including name, orga-
nization, and profile.

• Off-chain Components: A user tracing the data can also
look at the off-chain components which are unavoidable
part of the proposed framework, for example, cloud
computing resources [35], because of the huge size of
DLC and related computations.

IV. IMPLEMENTATION DETAILS

A. DLC Developer View

In Fig. 2 the developer view on DLC evolution is shown.
Several possible evolution tracks are shown for creation of the
new versions of datasets and DL models.

Fig. 2. Possible evoluton tracks for creation of the new versions of datasets
and DL models.

Under the current conditions and without blockchain in-
volvement the typical tracks can include:

• training the raw model RMd (for example, from
DenseNet family [37]) on the medical dataset Dc (for
example, CheXpert [38]) could lead to the new trained
model Mc = Train(RMd, Dc), and then its additional
re-training on the same dataset Dc (CheXpert [38]), but

with other hyperparameters (h∗) could result in the new
trained model Mm = Train(Mc, Dc, h

∗) where Train
is the function depicting re-training process (the left
rectangle Mm in the bottom of Fig. 2);

• training the raw model RMd (for example, from
DenseNet family [37]) on the standard general-purpose
dataset Di (for example, Imagenet [36]) could lead to
the new trained model Mi = Train(RMd, Di), and then
its additional re-training on the other dataset De (for
example, CheXpert [38]) could result in the new trained
model Mi = Train(Mi, De) (the central rectangle Mj

in the bottom of Fig. 2);
• combining the medical dataset De (for example, CheX-

pert [38]) with other medical dataset De (for example,
JSRT [39]) could lead to the new combined dataset
Di = Add(Dj , De) where Add is the function depicting
data combining process (Fig. 2), and then additional re-
training of model Mc on the combined dataset Di could
result in the new trained model Mn = Train(Mc, Di)
(the right rectangle Mm in the bottom of Fig. 2).

B. Tracing a DLC to its Origin

Usually, DLC developers clearly understand the evolution
and origin of their DLC final versions of combined datasets
(like Di in Fig. 2) or re-trained models (like Mm, Mj ,
Mn in Fig. 2). But from the consumer point of view it
is not so evident, especially in the view of the numerous
new versions of DLC for CADe/CADx of various diseases
(like cancer [40]–[44], tuberculosis [45]–[47], several other
lung abnormalities [38], [48], [49], etc.) published by the
scientific community (numerous scientists and independent
developers). It has become evident during the current COVID-
2019 pandemia when abundant volume of the related DLC
content had appeared and has been reviewed thoroughly and
criticized [50].

The main aim of the proposed solution is to assist consumers
in tracing back the DLC with multiple versions to its origin.
If the DLC cannot be traced reliably to its original publisher,
then it cannot be trusted, especially in the healthcare context.
Usually, consumers have access to some DLC provided by
developers with the limited metadata about the real origin of
the DLC. The matter is that the DLC is not only the function of
its previous states, but also the function of the processes (like
training with specific hyperparameters or combining datasets
with some specific pre-processing) leading to these previous
states. That is why the blockchain based methods (including
smart contracts, IPFS, ENS, and other on- and off-chain
components to establish authenticity of the DLC) should be
used for the reliable provenance tracking especially for the
trustless scientific community. Fig. 3 shows how a consumer
could track the DLC orgin and evolution due to involvement
of smart contracts. For example, contract A corresponds to the
raw model RMd trained on the dataset Di (with the contract
B) with the resulting model Mi = Train(RMd, Di) (with the
contract E which is the child of its parent contracts A and B).
The further evolution of DLC consists in re-training the model



Mi (with the contract E) on the dataset Dc (with the contract
C) leading to the resulting model Mj = Train(Mi, Dc) (with
the contract G which is the child of its parent contracts E
and C) (the red tracks in Fig. 3). As to the DLC of dataset
type, combining the medical dataset Dc (with the contract C)
with other medical dataset Dj (with the contract D) leads to
the resulting dataset Dl = Add(Dj , Dc) (with the contract F
which is the child of its parent contracts C and D) (the green
track in Fig. 3).

Fig. 3. DLC evolution for model (red) and dataset (green) tracks.

C. DLC consumer View

In Fig. 4 the consumer (medical personnel) view on DLC
is shown, where the medical DLC (like re-trained medical
models like Mm, Mj , Mn and the medical datasets DGT

e ,
DNLP

e ) are assumed to be obtained from developers by the
tracks shown in Fig. 3 with the correspondent blockchain
contracts involved.

It should be noted that evolution of the raw medical data
(like RDb) to the medical datasets can follow by different
tracks depending on the nature of labeling process. In the
case of the human labeling LH

a (or ground truth (GT) la-
beling) for the raw medical data RDb by the human expert
EHuman

e one can obtain the dataset DGT
e = L(LH

a , RDb).
But in many cases computer-aided labeling LNLP

a for the
raw medical data RDb is made by the natural language
processing (NLP) DL models (like MNLP

a ) [51] with the
resulting dataset DNLP

e = L(LNLP
a , RDb). For the data

provenance both of these tracks could traced back by their
contracts, for example, the contract CDGT

d is the child of

its parent contracts CRDb and CLH
a where the latter is the

child of its parent contract CEH
c . The consumers could obtain

DLC (models like Mm, Mj , Mn with reliable provenance for
constructing the following predictions Pm = P (Mm, RDb),
Pn = P (Mn, RDb), Pj = P (Mj , RDb) (the violet region
in Fig. 4). On the basis of this predictions, consumers can
obtain the assistive CADe/CADx decision (by auction, vot-
ing, or other blockchain method) as to the availability of
diseases/abnormality precursors in the raw medical data RDb.
But if these raw data RDb have the proper GT labeling by
human experts and actually provide the dataset DGT

d , then
metrics Am = Test(Mm, DGT

e ), An = Test(Mn, D
GT
e ),

Aj = Test(Mj , D
GT
e ) for these models Mm, Mj , Mn can be

calculated after tests against the dataset DGT
d (orange tracks in

Fig. 4). Finally, these metrics can be used for the construction
of the more effective ensembles of the medical DL models.

A front-end decentralized application (or consumer DApp)
can be developed for the user to automate the authenticity
process, or it can be integrated within DL frameworks or
web-based services or applications to indicate authenticity
of the used DLC. In Fig. 3, every DLC in the red/green
tracks is associated with a smart contract that points to its
parent DLC and every parent DLC is linked to its child, in
a hierarchical fashion. As shown in Fig. 3, a consumer can
trace smart contract G to its parent smart contracts C and E
where the latter is traceable to the linked smart contracts A
and B. The smart contract F can be traced back to the linked
smart contracts C and D. These provenance data are openly
accessible and available due to the Ethereum ledger.

V. DISCUSSION

The depicted blueprint of the provenance data framework
for the medical DLC does not describe all possible developer
and consumer roles and tracks. For example, the additional
contracts will be necessary to follow the origin of raw
data with regard to the medical devices where they were
captured that will demand taking into consideration some
aspects of blockchain for IoT and Edge Computing [5], [19].
The off-chain cloud resources will be necessary for heavy
computations related with training, predicting, and testing the
DL models, and also large storage cloud resources will be
necessary for storing/pre-processing huge medical datasets. As
a future work, we are in the process of developing front-end
Dapps on the basis of iExec SDK [35] for users to automate
the establishment of proof of authenticity of published DLCs,
which could be especially promising with regard to the neces-
sity to perform the heavy off-chain computations by decen-
tralized cloud computing paradigm. The proposed blockchain-
based solution can ensure the key aspects of decentralized
DLC framework like integrity, accountability, authorization,
availability and non-repudiation. All transaction history as
well as the provenance data available for the consumers to
track and trace a DLC to its origin are tamper proof. Every
participating entity is accountable for its actions on the ledger.
All transactions taking place on the blockchain network are
cryptographically signed by the initiator and no one can deny



Fig. 4. The consumer view: predictions Pm, Pn, Pj (violet) and their metrics after tests Am, An, Aj (orange) for the new data DGT
d (or DNLP

e ) obtained
after labeling (blue) the new raw data RDb by human experts EHuman

e (or by NLP models MNLP
a ).

their own actions. The participants can always access the
smart contracts once deployed to the blockchain network. The
information stored on the ledger is saved in a distributed and
decentralized way and is not subject to hacking, compromise
or being a single point of failure. The relevant analysis of the
most interesting use cases (like shown in Fig. 4) with examples
of Solidity smart contracts, a pluggable DApp component and
estimation of the related operational costs will be described in
details elsewhere [32].

VI. CONCLUSION

In this paper, we have presented a blockchain-based solution
to search back the history of the medical DLCs in which a
secure and trusted traceability to the original DLC creator
or source can be established, in a decentralized manner. The
proposed solution could use a decentralized storage system
IPFS, Ethereum name service, and off-chain cloud component
support by iExec platform. At the moment the proposed
blueprint of framework, system design, and implementation
details are generic enough that can be applied not only for
the medical DLC, but also to other types of DLC such as
various unstructured (images, sequences, video, audios, etc.)
and structured data. The solution can help to resist fake or
unreliable medical DLCs by helping consumers to determine
if a medical DLC is traceable to a trusted and reputable source.
If a medical DLC is not traceable, then the medical DLC
cannot be trusted. Moreover, the smart contract-based solution
can provide a trusted way for secondary authors to request

permission from the original author to copy and edit DLCs.
The future research is dedicated to development of a pluggable
DApp component and estimation of the related operational
costs in terms of Ether and Gas when the smart contract will
be deployed on the real Ethereum network with intensive use
of off-chain components like cloud computing and storage
resources.
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