Feasibility Study Of Hardware Acceleration In Gif
Compression Algorithm

Ivan V. Mozghovyi
Dept. of Computer Engineering
National Technical University of
Ukraine “Igor Sikorsky Kyiv
Polytechnic Institute”
Kyiv, Ukraine
mozg.v34@gmail.com

Abstract— Increasing requirements for data transfer and
storage is one of the crucial questions now. There are several
ways of high-speed data transmission, but they meet limited
requirements applied to their narrowly focused specific target.
In addition, such solutions do not solve the problem of data
storage. The data compression approach gives the solution to
the problems of high-speed transfer and low-volume data
storage. This paper is devoted to the compression of GIF
images, using a modified LZW algorithm with a tree-based
dictionary. It has led to a decrease in lookup time and an
increase in the speed of data compression, and in turn, allow
developing the method of constructing a hardware
compression accelerator during the future research.

Keywords— FPGA, GIF, lossless compression,
compression, dictionary, hardware acceleration

image

. INTRODUCTION

Nowadays, the problem of data transferring optimization
is becoming one of the most significant. Whereas the size of
data increases, there should be a way to transfer it with the
highest speed. A solution to this problem depends on the
branch of its application. There is a list of the solutions
shown in Fig. 1.

One of them is parallel buses. They are used mostly for:

e Peripheral connections to the computer motherboard
(e.g. PCI express bus for connection of GPU module);

e System on chip interconnection buses (e.g. Avalon
interface for connection of Intel FPGA modules);

e Standardized system buses for microcontrollers (e.g.
AHP APB busses of ARM ® Cortex ® processors).

Another approach is high-speed serial interfaces. An
application of it can be found in:

o Network interfaces;

e The connections between modules on a single board,;
o Data transmission for high-speed ADC modules;

o Low-voltage differential signaling [14, 15].

Despite the different areas of application, these solutions
have common problems. The first one is that they are used
only for data transmission. As a result, they cannot solve
the problem of data storage, which is also important. The
next one is a narrowly focused area of application. It

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Anatoliy M. Serghienko
Dept. of Computer Engineering
National Technical University of

Ukraine “Igor Sikorsky Kyiv
Polytechnic Institute”
Kyiv, Ukraine
a.ser@i.ua

Roman D. Yershov
Dept. of Electronics, Automatics,
Robotics and Mechatronics
Chernihiv Polytechnic National
University
Chernihiv, Ukraine
roman.d.yershov@gmail.com

means that each solution has a specific target, which is non-
scalable to another.

It is well known, that the usage of data compression can
be found in more branches than high-speed interfaces or
parallel buses. In addition, a combination of high-speed
interfaces and data compression is a good practice. For
example, in the latest versions of the HDMI interface, the
highest data rates are possible only using Display Stream
Compression [12, 13]. The data compression is used not only
for data transfers but also for storage. Therefore, developing
an efficient approach of data compression solves not only the
transmission problem but also the storage. It does not matter
if it is big data storage or just a memory block to keep the
buffered image. Decreasing the size of a single file optimizes
both cases.

The main point is that usage of the different formats can
modify the entire image corresponding to the specific
algorithm. In most cases, it is a compression method
algorithm. The main difference between all compression
methods is that if it is lossless or with losses. The term or
“information loss” means that some compression methods
cannot guarantee exactly the same image after its
decompression. It will definitely differ from the original.
However, in some cases, a human eye cannot notice the
difference between the source and decompressed image, and
using the method with losses is acceptable. Mostly they are
used for multimedia, where little distortion after
decompression is insufficient. In addition, there are other
features of compression methods, e.g. dictionary or run-
length compression, compression ratio, compression speed
[7], etc.

Il. SELECTION OF A COMPRESSION METHOD

There are some points about the selection of the
compression method. In general, all the compression
methods are divided into:

¢ Run-Length Encoding;
e Statistical Methods;
e Dictionary methods.

All of these classifications find their implementations in
software, but the question of their hardware implementation
remains actual. In the comparative table of compression

transmission

Wavelet
compression

Compression

VPS8, VP9

in paper [1] was mentioned that run-length encoding does
not give a good compression ratio, that is why they are
omitted, despite it is lossless. There are left only two variants
to choose from: statistical or a dictionary method. The
general scheme of a compression method consists of two
parts: model and coder. A model finds the redundancy in the
input data and sends it to the coder, which replaces the
repetitive fragments with the corresponding codes.

A. Statistical methods

There is a clean separation onto model and coder parts.
The statistical model assigns the values to the events (some
data fragment found) depending on the probability of their
appearance in the input data sequence. The more frequency
of the event occurrence the more the value. The main
problem of a hardware implementation of a statistical
method is that they are mostly based on Markov stochastic
modeling. In paper [4] was mentioned that the compression
ratio of the statistical methods is limited by the usage of
multi-symbol alphabets zeroth-order modeling, and on the
other hand, the speed is limited by the usage of binary
alphabets in high-order modeling. The author’s explanation
of it is in that the data in binary symbol alphabets only a few
bits are processed in each cycle. Finally, the paper [4]
represents the next features of hardware implementation:

Fig. 1. Data transmission solutions

e Hardware complexity of zeroth-order modeling and
not impressive productivity results.

e High-order modeling also does not give good
performance characteristics. They are not comparable
with the dictionary methods' results.

e Tree-based implementations using Huffman coding
showed better results but the problem of adaptation to
the difference in input image sequence remains. In
addition, the best performance was achieved only
using content-addressed memory. In the addition, the
best-mentioned compression ratio of 0.5 is also not
impressive.

AMBA

Ways of large-volume data

JESD204B
RapidlO @

Wider bus
interfaces

Higher data rate

Gigabit
Ethernet

I1l. ReviEw OF Lzw COMPRESSION METHOD

The target of current research is to find the way to
improve the existing GIF [5] image format. The main benefit
of using GIF is that image compression is provided using
LZW [8] dictionary lossless compression method. In some
cases, it is necessary to keep the image as it was before the
compression. For example, the image of schematics with
small notations or values. In addition, a GIF file can be
represented as an animation, due to the compressed sequence
of image frames inside a file [5]. Different solutions can be
found to improve the existing GIF image format. Generally,
they can be divided into the optimization of the color table
and improving the LZW compression method. Our research
is about the modification of the LZW compression method.

Some research has addressed the problem of its hardware
implementation. The authors of the paper [9] propose an
FPGA-based implementation of the LZW algorithm. The
results showed that such a solution gives a speed factor up to
23.51 over the sequential implementation on the CPU.
Nevertheless, it is possible due to the implementation of 24
instances of compression module on a single chip. This
research also approves the possibility of algorithm
parallelization. There is another study [3], proposing to use
the custom compression method that implements a bit plane
slicing and adaptive Huffman encoding for the LZW
dictionary. This approach gives a result of a higher
compression ratio up by 2 times more than the original
method. One more way [10] is to improve the utilization of
the dictionary by dividing it into sets. This allows decreasing
the lookup time and partially operating in a parallel way.
Combining all of the recommended methods, an own FPGA
implementation can be designed. Hardware implementation
can find its application in different branches, e.g. space
technologies [11].

To obtain an efficient implementation of a hardware
compressor, the answers for 3 questions should be found:

e What might be pipelined and parallelized and in what
way?

e What processing stages depend on the results of the
previous ones?

o What parts of algorithm might be scalable?

IV. IMPLEMENTATION ASPECTS

Our method of hardware compressor implementation
includes both hardware and software parts. For today, several
companies (e.g. Intel, Xilinx) have suggested a solution to
such implementation using the technology of the “System-
on-Chip” (SoC). For example, Intel has a family of FPGAs
Cyclone® V SoC, which implements an FPGA and an ARM
dual-core processor ARM® Cortex®-A9 on a single chip. The
communication between hardware and software subsystems
is performed using the hardware processor system IP Core,
which allow interconnects FPGA interfaces with ARM
processing core [16]. Fig. 2 represents the scheme, where can
be seen the connections between each parts of the system.
Other aspects of implementation give answers to 3 questions
from the review section.

Firstly, the simplified structure of the GIF file shown in
Fig.3 should be analyzed. There are many things, which can

be modified to get higher performance, but in our case, it
should be focused on the fact that GIF format supports
displaying a sequence of images as frames. Therefore, it
should be considered that pipelining and parallelization
might be applied either to the image regions (after dividing
the image into regions) or to each image from the distributed
sequence into each processing branch if the sequence of
frames is processed. For example, if 4 instances of a
hardware accelerator are available, an each image on each
processor for the frame sequence can be distributed. And,
properly to the sequence, add the compressed frames to the
result file.

Another point is that the LZW algorithm mostly consists
of sequential processes. The first step of the algorithm is to
initialize the first 255 dictionary records with default values
from 0 to 255. This step cannot be parallelized for obvious
reasons. To decrease the lookup time of occasion search, the
modified tree-based structure of the compression dictionary
can be used. Each record of this dictionary consists of the
fields shown in table 1.

FPGA
32-Bit 32-Bit 32-Bit 32-Bit
DCMI DCMI IP Avalon-ST Avalon-ST Hardware Avalon-ST
Camera > »| FIFO memory »| compression
Core
module
32-Bit vy
Avalon-
Control Block HPS-to-FPGA FPGA-to-HPS MM Avalon ST-to-
Slave Master MM bridge
7'}
128-Bit AXI 128-bit AXI
\ 4
FPGA HPS-to-FPGA FPGA-to-HPS ,GE,'DJ/' ;Ob:e:t/:i
Manager Bridge Bridge ¥
A
. A
32-Bit 64-Bit AXI 64-Bit AXI
) 4
_ 64bit
32 bit D \ 4
UART L3 interconnect (NIC-301)
debug 32 bit SDRAM
Controller
A
GPIO 32 bit . .
32-Bit 32-Bit
LED B
) 4
32 bit
SD/MMC Ethernet MAC : Ml PHY
Transceiver

Fig. 2. Final Device Scheme

Logic screen desctiptor color table

Image descriptor

compressed images

GIF89a |[W|H |--- [Bg|R||RGB RGB|| , | Left

1...255 1...255

Top|W | H|-|| MC| S . |S ;

bytes bytes

Fig. 3. GIF File Structure

TABLE I. TREE-BASED DICTIONARY NODES
Nodes
Address 97 268 297
Value (-2 «a») (97: «b») (268: «c»)

The address represents the actual offset in memory
(RAM) to access the byte value from the dictionary default
values or the ancestors. It is similar to the pointer in the C
programming language. This field is necessary for getting the
access to the proper nodes.

The Value is the combination of the ancestor's address
and the default record. For example, if the text string is
“ABC”, the node has the next structure:

Address 297 is the newly assigned address of the node.
268 is the address of the ancestor’s, which has the address
268 and the value 97: 268, where 97 is the address of its
ancestor - default record “a”.

Another point is to choose the correct form of a tree
structure. The AVL [18] structure was selected because it is
balanced, and the balancing process is performed on a step of
adding a new node.

Scaling might be applied to different features. For
example, service data of GIF file allow configuration of such
parameters:

o Number of bits per color;
e Amount of frames(images) per file;
¢ Image resolution.

However, the main scaling parameter, in our case, is that
an FPGA allows multiple instance implementations. The
scaling of this parameter is limited only to the amount of the
FPGA components.

V. DISCUSSION

Summarizing the above study, the developed hardware
compression unit does not show breakthrough characteris-
tics. However, during analyzing the FPGA resources that is
actually used [16], it can be seen that it has enough space to
implement at least 20 instances of the hardware part of
investigated compression unit. Moreover, it is not the
highest-performance Intel FPGA, which can offer. The
leading Intel FPGAs Stratix 10, which has many more
resources than any Cyclone V FPGA, allows increasing the
performance characteristics by several times. Assuming the
above, the limitations of the software embodiments of image
compressors can be overcame.

Another benefit of an FPGA using is that a low-power
consumption feature can be achieved under changing of
some parameters of the synthesis constraints files (*.ucf).
Therefore, one of the aspect of the future research can also
be dedicated to developing the image compression unit
embodiment optimized by low-power consumption criteria

REFERENCES

[1] M. Sharma, “Compression Using Huffman Coding” International
Journal of Computer Science and Network Security, vol.10, 5, (5
2010).

[2] H. Rubaiyat, “Data Compression using Huffman based LZW
Encoding Technique” International Journal of Scientific &
Engineering Research, vol. 2, 11, (11 2011).

[31 A. Sawsan, T. Abu, M. M. J. Hossam, M. K. Asma’a, I. K.
Gharaybih, “Improving LZW Image Compression”, European
Journal of Scientific Research ISSN 1450-216X vol.44, .3, (2010),
pp.502-509.

[4] K. Papadopoulos and I. Papaefstathiou, "Titan-R: A Reconfigurable
Hardware Implementation of a High-Speed Compressor," 2008 16th
International Symposium on Field-Programmable Custom Computing
Machines, Palo Alto, CA, (2008), pp. 216-225, doi:
10.1109/FCCM.2008.14

[5] CompuServe “Graphics Interchange Format (GIF)”, CompuServe
Incorporated, (1987)

[6] J. Miano “Compressed image file formats” Addison-Wesley, New
York, NY. (2001).

[71 D. Solomon, “Data Compression The complete reference”, 4-th Ed.,
Springer-Verlag London Limited, (2007).

[8] T. Welch, “A Technique for High-Performance Data Compression”,
Computer, vol. 17, 3 (6 1984), 8-19. doi: 10.1109/MC.1984.1659158

[91 X. Zhou, Y. Ito, K. Nakano "An Efficient Implementation of LZW
Compression in the FPGA", International Conference on Algorithms
and Architectures for Parallel Processing, 10048, 3 (11 2016). doi:
10.1007/978-3-319-49583-5_39

[10] W. Cui, “New LZW Data Compression Algorithm and Its FPGA
Implementation”, Picture Coding Symposium (11, 2007).

[11] P.-S. Yeh, “Implementation of CCSDS Lossless Data Compression
for Space and Data Archive Applications” NASA/Goddard Space
Flight Center, Code 564, Greenbelt, MD, 20771 USA

[12] HDMI "HDMI 2.1 Overview". HDMI Forum, Inc. hdmi.org. 4
January 2017. Retrieved 2017-01-10.

[13] HDMI "HDMI 2.1 Press Release". HDMI Forum, Inc. hdmi.org. 4
January 2017. Retrieved 2017-01-10.

[14] P. Heydari, "Design and Analysis of Low-Voltage Current-Mode
LogicBuffers", Department of Electrical and Computer Engineering
University of California, Irvine, CA 92697-2625

[15] A. Boni, A. Pierazzi, D. Vecchi “LVDS 1/O Interface for Gb/s-per-
Pin Operation in 0.35-um CMOS”, IEEE Journal Of Solid-State
Circuits, vol. 36, 4, (4, 2001)

[16] Intel FPGA “Cyclone V Hard Processor SystemTechnical Reference
Manual”, Intel Corporation, 101 Innovation Drive, San Jose, CA
95134, (2018).

[17] Terasic, “DEO-Nano-SoC User Manual”, Terasic Inc, December 28,
2015.

[18] G. M. Adel'son-Vel'skii, E. M. Landis, “An algorithm for
organization of information”, Dokady Akademii Nauk SSSR, 146:2
(1962), 263-266

