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Abstract—The phenomenon of memory has been studied by 

many neurobiologists. The variety of memory types includes 

short-term, long-term, sensory, topographic, semantic, 

immune, and so on. However, none of them works as a memory 

of the electronic devices: new information does not overwrite 

the old one, losing a small number of neurons does not affect 

the whole system, there is no explicit separation into address 

and data. Human memory is also capable of recognizing 

complex objects and structures without great efforts. The 

purpose of this article is to observe the representation of high-

level objects with a set of features and relations in an artificial 

intelligence system. The specific sparse feature-based encoding 

is introduced. This representation is investigated subject to fast 

GPU implementation of a modified version of a well-known 

human memory model called Sparse Distributed Memory 

(SDM). A  hybrid model of SDM and Compressed Sensing is 

proposed. Two techniques for reading sparse data from the 

hybrid model are designed and examined. Comparative 

analysis for both sparse and dense signal reconstruction 

problems is provided. 
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I. INTRODUCTION 

A. Classic Model Overview 

Sparse Distributed Memory is the classical human 
memory model designed by Pentti Kanerva [1]; one of its 
main theoretical advantages is the relation to cerebellar 
models and, in particular, models of Marr and Albus [1].  
SDM is also related to immunological memory models [2]. 

Kanerva's SDM model consists of  -dimensional 
integer vectors that serve as -bit physical memory cells. It 
means that one bit of data doesn't correspond to one bit of 
memory, but an integer. -bit binary addresses are used for 
addressing; that is, physical cells are much smaller than 
addresses (sparsity) [1]. Data are -bit binary numbers. In 
the classical Kanerva’s design, an -bit binary address is 
associated with each physical cell. 

Both reading and writing operations, unlike computer 
memory, involve several activated cells. In classic Kanerva’s 
model, the cell is activated if the Hamming distance (i.e., the 
number of positions at which items differ) between the input 
address and the cell address does not exceed a predefined 
threshold  [1]. 

Meanwhile, Jaeckel’s approach suggests associating each 
memory cell with a short -dimensional mask ( ). 
Every index of the mask is associated with a target value of a 
corresponding bit. The resulting model has numerous 
advantages: it is compatible with the Marr-Albus model of 
the cerebellum [3], its implementation is faster due to the 
reduction of the number of comparisons. 

B. Dense Signal Reconstruction Experiment 

Dense signal reconstruction via fast GPU-based SDM 
implementation has been studied recently [4]. Jeackel’s 
modification was chosen for the layer’s activation function 
[5]. Some of the insights provided by the experiment include: 

1. Strong mask length dependency 

Activation mask length is the most crucial parameter of 
the model. It affects read/write operations performance as 
well as data restoring accuracy. The longer the mask, the 
fewer data samples are matching the mask and, therefore, get 
ignored by the model. The longer the mask, the longer is 
activation function processing. Designing and investigating 
the algorithm that estimates the optimal mask length w.r.t the 
specified metrics is an open and challenging problem [6].  

2. High model stability 

SDM noise tolerance estimation showed that a 
satisfactory signal recovering level is achieved even for two 
noisy duplicates per data sample. 

C. Sparse Signal Reconstruction Problem 

However, the dense signal (e.g., a sequence of image 
pixels or a sentence encoded via Word2Vec or similar 
technique) does not possess a complex structure. Instead, 
suppose that we have to deal with some meaningful 
attributes (for example, a tree might be old or young, tall or 
low, with or without leaves, etc.). In this case, it turns out 
that a single object description consists of a small set of 
features, even though a global variety of observed features 
can be vast. 

The described design of a problem leads to the necessity 
of a sparse and discrete data processing. More specifically, a 
neural network for storing sparse discrete or binary vectors is 
needed. Some of the additional requirements to the model’s 
characteristics include but not limited to: 

 distributed representation of data with some 
level of fault tolerance against errors occurring 
in separate areas of memory; 

 information retrieval is associative, i.e., reading 
from memory works even for an incomplete set 
of object’s features; this property refers to the 
human brain’s ability to generalize input data 
that is based on incomplete or fuzzy patterns. 

D. Previous Results on Sparse Encoding 

Some results and propositions regarding sparse data 
representations for SDM were published by Sjodin [7]. He 
examined an encoding design called Sparchunk coding. Its 
main idea is restructuring input data into a recursive 
sequence via a specific noncommutative and nonassociative 



 

 

binary operation called chunking. This approach has one 
critical drawback: its calculations are hard to parallelize. This 
disadvantage makes Sparchunk encoding unapplicable for 
real-world problems. 

Another known technique successfully applied to SDM is 
the N-of-M code [6]. It deals with probabilistic error 
correction right after reading. 

E. Compressed Sensing 

Compressed Sensing is a signal processing technique that 
allows recovering signals from the observations with a 
sample rate that is much lower than The Nyquist–Shannon 
sampling theorem requires [8][9]. 

In Compressed Sensing schema, input signal  is 
projected onto the basis where it is sparse, and the projection 
operator satisfies Restricted Isometry Property (RIP) [10]. 
The signal is recovered by finding solutions to undetermined 
linear systems. 

This technique has been successfully applied for 
numerous real-world problems, including MRI [11], facial 
recognition [12], space researches [13]. 

F. Proposed Algorithm 

This paper suggests an integrated model constructed as a 
hybrid of SDM and Compressed Sensing. Its design is aimed 
at the efficient storing of high-level objects and 
sparse/discrete vectors. The model is highly scalable for 
GPU clusters. 

II. MODEL SPECIFICATION  

A. Activation function 

Since we deal with sparse signals, each data sample is a 
strongly imbalanced  array, neither class Kanerva’s 
activation nor Jaeckel’s modification suit the experiment. 
The number of cells for SDM is 

. 

The activation function for the sparse signal 
reconstruction experiment was constructed the following 
way: each cell was associated with a pair of indices  
without repetition. Therefore, a cell was activated for 
reading/writing only if a data sample possesses  and  
features [7]. This approach deals with internal class 
imbalance definitive for each encoded sample. 

B. Reading techniques and threshold selection 

Suppose that an image possesses  features out of . 
Then the probability of  is , the probability of  
is . 

If -th cell contains  records, then a single item contains 
 ones on average. For this cell, the threshold is 

calculated in the following way: 

 

1) “Statistical” approach 
This approach extends the basic SDM model with a 

threshold. 

We calculate thresholds for each activated cell; then we 
get a general threshold in the following way: 

 

Then this threshold is used instead of  in classic SDM 
reading operation. 

2) Parameterized “biological” approach 

Suppose that there are  activated cells. The parameter 
 should be chosen beforehand. for each index  of 

each activated cell  we calculate an array of index wise 
decisions: 

 

Then, the result is calculated as: 

 

This research deals with both “statistical” and 
“biological” models 

 

III. DESCRIPTION OF THE EXPERIMENT 

A. Dataset 

CIFAR-10 dataset, which is widely used to test, validate, 
and train machine learning and computer vision algorithms, 
was selected. The dataset consists of  images. Images 
are divided into ten classes (birds, cats, cars, etc.),  
images per category.  

The binary version of the dataset is the most convenient 
for the experiment. The first byte is the marker of the class; 
the following 3072 bytes are the pixel values of the image. 
The first 1024 bytes correspond to the red channel, the next 
1024 bytes - to the green channel, the last 1024 bytes -  to the 
blue channel. Values are arranged in rows, that is, the first 32 
bytes are the values of the red channel of the first line of the 
image. 

Thus, the experimental data consist of nearly 175MB of 
image data in binary format. The length of one image is 
24576 bits. This value is the dimensionality of the SDM. 

B. Computing Platform 

NVIDIA CUDA, due to its cheap parallelism, is 
exceptionally suitable for implementing models like SDM 
[14]. 

 graphics card (Maxwell 
architecture [15]) was used to test the model. It employs  
CUDA cores and  of memory; its compatibility level is 

 CUDA compute. The calculations were performed on  
one-dimensional thread blocks. Each block activated  
threads (  threads were involved). 

C. Feature-Based Encoding 

Sparse representation of dense image data requires 
specific binary encoding. CIFAR-10 dataset is suitable for 
feature-based encoding by its design since it is a collection of 
images of different classes that barely intersect. 

Sparse representations were obtained via Google Cloud 
Vision’s API; this service provides cheap, fast, and efficient 
image classification and labeling. Only features with a level 
of significance higher than  were used, others were 
dropped. 

The experiment employed  encoded images; sparse 
representations with at least two features were selected for 



 

 

further processing. The overall number of features (and the 
dimensionality of the model, respectively) is . 

IV. PROGRAM IMPLEMENTATION 

A. Basic Architecture 

Essential reading/writing and storage operations were 
inherited from the implementation created for the previous 
research [4]. 

Sparse signal reconstruction problem required the 
following new modules: 

 feature-matching activation function; 

 CUDA kernel for basic threshold calculation; 

 CUDA kernel for cellwise decision calculation 
in case of the “biological” model. 

Also, initial memory allocation and mask generation 
procedures were adjusted to match new demands: 

 increased number of cells; 

 decreased dimensionality; 

 a  full set of pairs of indices for activation masks 
(instead of random mask generation). 

The hybrid architecture framework developed during the 
research will be included as a component to the underlying 
software libraries for the SCIT cluster complex at V.M. 
Glushkov Institute of Cybernetics of NASU [16]. 

 Fig. 1. Accuracy bar plot for a set of the tested models 

 

Fig. 2. Bar plot for the number of images for which features were 
reconstructed correctly with a 90% threshold. 

V. RESULTS OF SIMULATIONS 

A. Naïve Accuracy Estimation 

The primary accuracy metric is the percent of correctly 
reconstructed bits (Fig. 1).  The best model, in this case, is 
“statistical”;  parameter importance [17] for the 
“biological” model is also quite visible. 

However, due to a vast 0/1 imbalance, naïve accuracy 
metric is not the right choice. Yet, it illustrates that low 
threshold values for the “biological” models do not give 
proper inference. 

B. Threshold-based image restoration metric 

Another option for accuracy estimation is to calculate the 
number of images for which the features were restored 
correctly with a certain threshold,  in our case (Fig. 2). 
This metric is more robust in case of a  imbalance, but it 
is not illustrative because most of the models perform 
similarly. 

For this experiment, this metric shows that low threshold 
values for the “biological” models result in poor signal 
restoration quality for a general problem. 

 

Fig. 3. Bar plot for reading/writing performance measurements for the 
examined models 



 

 

 

Fig. 4. Bar plot for the average false negatives. 

C. Reading/Writing Operations Performance 

As far as reading and writing operations are quite similar 
for all the observed models, and most of the calculations are 
shared, the performance measurements of the models are 
almost equal (Fig. 3). 

It is worth mentioning that performance measurements 
for this experiment are close to the ones in a dense signal 
reconstruction experiment [4], though the dimensionality has 
reduced dramatically . The reason for it is that 
at the same time, the number of memory cells has increased 

 

D. Average False Positives / False Negatives 

Essential metrics for strongly imbalanced datasets are 
average false positives and average false negatives numbers 
since they can illustrate how good is the model in 
distinguishing “false” vs. “true.” 

Bar plot for the average false negatives (Fig. 4) shows 
that the “statistical” model is the worst one w.r.t recognizing 

’s, but this fact is just one side of the coin since  
would show the same result w.r.t. this metric. 

 

Fig. 5. Bar plot for the average false positives. 

 

Bar plot for the average false positives (Fig. 5) shows that 
the “statistical” model vastly outperforms each of the 
parameterized “biological” family of models w.r.t. ’s 
recognition. It is also clear that increasing the “biological” 
threshold  leads to the growth of FN errors and the decrease 
of FP errors. 

It is vital to notice that  parameter can be constructed 
adaptively. The respective algorithm must take into account 
partial  probabilities for each physical memory cell, as 
well as some assumptions regarding the overall memory load 
level. 

VI. CONCLUSION 

A. Model Architecture 

Several techniques for storing holistic structures in neural 
networks in a sparse representation have been proposed. It 
employs the Compressed Sensing approach along with a 
classic neural memory model. 

The ensembled model is suitable for GPU parallelization, 
and reading/writing operations are fast even on old 
generation GPUs. Therefore, the model can be applied to 
solving numerous real-world problems, e.g., robotics, image 
recognition, etc. 

B. “Statistical” vs. “Biological” Reading Methods 

Two approaches for reading sparse data were suggested, 
implemented, and carefully examined. The “statistical” 
model averagely outperforms the parameterized family of 
“biological” ones. However, the overall error cost strongly 
depends on the general  tradeoff for the particular 
problem.  

C. Dense vs. Sparse Signal Reconstruction via SDM 

The obtained results show that raw SDM reconstructs 
sparse signals less accurate than dense ones [18][19]. 
Proposed techniques for reading sparse data have 
significantly improved signal reconstruction error (w.r.t. 
average false positives/false negatives). 

D. Future Plans 

Further research plans are related to studying SDM 
applications for full-cycle signal compression and 
reconstruction. 
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