
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Genetic Programming of Discrete Cosine Transform

Processors

Anatoliy Sergiyenko

Dept. of Computer Engineering

Igor Sikorsky Kyiv Polytechnic Institute

Kyiv, Ukraine
aser@comsys.kpi.ua

Anastasia Serhienko

Dept. of System Programming and

Specialized Computer Systems

Igor Sikorsky Kyiv Polytechnic Institute

Kyiv, Ukraine

an.ser.313kpi@gmail.com

Vitaliy Romankevich

Dept. of System Programming and

Specialized Computer Systems

Igor Sikorsky Kyiv Polytechnic Institute

Kyiv, Ukraine

romankev@scs.ntu-kpi.kiev.ua

Abstract—A method of the pipelined datapath synthesis

which is based on the genetic programming is used for the

discrete cosine transform (DCT) processor synthesis. The

method is based on the representation of the algorithm by the

spaced synchronous data flow graph (SDF), transferring it to a

chromosome, and using the genetic optimization process. The

method is implemented in the SDFCAD program system which

is able to perform the input of algorithms specified by the SDF

and automatically perform the synthesis of pipelined

processors. The DCT processors synthesized by this system

have less hardware volume and higher throughput than the

similar processors configured in FPGA.

Keywords—SDF, FPGA, VHDL, DCT, datapath, genetic

programming

I. INTRODUCTION

The system-level design is a new technology to speed-up
the ASIC and FPGA design. But the system synthesis
algorithms are much complex comparing to the logical or
physical design [1]. The behavioral synthesis as a case of the
system synthesis is based on mapping the behavioral
algorithm to the device structure. This mapping is based in
the scheduling an algorithm represented by a data flow graph
(DFG) to the selected set of computational resources. During
the behavioral synthesis, such greedy algorithms like force-
directed scheduling [2] give the frequent results but which
are far from the optimum ones. The use of the integer linear
programming approach enables the optimum solutions. But
this method is not applicable to large DFGs [3].

The use of the genetic programming (GP) algorithms in
the behavioral synthesis makes it possible to synthesize the
processors of any complexity [2,4]. This approach is often
used for the program development but sometimes for the
hardware synthesis[5].

A method spatial synchronous dataflow graph (SDF)
mapping into the structure configured in FPGA is proposed
in [6]. Here, its modernization to GP is considered and the
results of its application for the discrete cosine transform
(DCT) processor synthesis are shown.

II. GENETIC PROGRAMMING METHODS

The genetic algorithm and its variation GP consider the
search space 𝔾 which is abstracted to a set of all possible

chromosomes, that is, the strings g𝔾 that encode specific
solutions. The chromosome g encodes a specific genotype.

The individual x𝕏 is a candidate for the solution from the
solution space 𝕏. It is modeled as a phenotype
x = Phenotype(g). The level of the fitness to the optimum

solution is determined by the fitness function v(x), which
moves the evolution process in the desired direction [4].

The optimization process consists in the evolution of
several generations starting at initial random population
Pop(0), and finishing with the population Pop(N) containing
the optimum solution. The fitness value v is determined for
the chromosomes g of each individual by calculating the
efficiency criterion Fitness(g) and comparing it with other

individuals of the set Pop(t), t  N. Each new generation is
the result of the function Select(Pop(t – 1)) which selects a
set Popm of ps individuals that are suitable for the
reproduction, and function Reproduce(Popm), which
generates a new population using create, mutate, crossover
operations.

GP most often deals with the optimization of DFG, which
has a tree structure. This structure is coded as a bit vector

which is used as the chromosome g𝔾 [7]. GP in various
methods is performed only at the separate stages of the
structure synthesis: resource allocation, scheduling, resource
assignment. Thus, in the SPARCS method, the schedule is
searched using linear programming, and the FPGA resource
allocation is found by GP [8]. In [9], GP is used to improve
the list scheduling, and in [10] does the cycle parallelization.

In several GP approaches the pair-based chromosome
encoding is used, when an operator is related to some
resource. The NSGA-II method uses the chromosome, in
which the gene represents the operator-resource relationship.
This method is based on the sequential deriving the structure,
schedule, and operator assignment based on DFG [11].

In the PDGP method, the tree-like DFG is represented in
the n-dimensional lattice. The evolution is subject to the
operation nodes and the links between them taking into
account the restrictions [12].

The ECGP method is used to find the parallel algorithms
that are running on a system with limited hardware. This
method is called as Cartesian GP method because the graph
nodes are represented in a two-dimensional lattice with the
Cartesian coordinates. The execution of an operator node that
stands to the left precedes the execution of one that stands to
the right. The chromosome is a series of integers that encode
the nodes of the lattice. Numeric vertex tags, i.e., genes,
encode links between nodes and their functions. This method
has many different modifications [13, 14].

The GP methods are adapted only to perform individual
steps in the structural synthesis of computing devices, which
are performed sequentially, so the optimization is often
imperfect. In most methods, the result of the synthesis is a
processor that does not perform the algorithm in the

pipelined mode, or the resulting datapath operates only with
a period of one cycle.

Among all methods, the ECGP method is promising, in
which the chromosomes encode the spatial position of the
DFG operator nodes. Such encoding enables the effective
finding of the fitness function.

III. GENETIC PROGRAMMING OF THE PIPELINED DATAPATH

The method of the pipelined datapath design is based on
the representation of SDF in 3-dimensional space as a spatial
SDF KG = (K, D, A). Here, K is the matrix of node-vectors Ki
corresponding to the operators; D is a matrix of edge-vectors
Dj that represent links between operators; A is the incidence
matrix of SDF. In the vector Ki = (ki, si, ti)T, the coordinates
ki, si, ti correspond to the operator type, the processing unit
(PU) coordinate, and the time slot, in which the result of this
operator is written to the register [6, 15].

KG consists of the spatial configuration KGS = (KS, DS, A),
which codes the device structure, and the event configuration
KGT = (KT, DT, A) which does the schedule. Then, the
mapping of SDF into the structure consists of splitting KG
into KGS and KGT by cutting the matrices K and D into
submatrices KS, KT, and DS, DT.

The matrix K of a spatial SDF encodes a feasible
solution. The pipelined datapath synthesis using the spatial
SDF consists of constructing a number of optimized
solutions KG and selecting the optimized solution due to an
effectiveness criterion v(K). The optimized solutions are
obtained by equivalent transformations of the spatial SDF,
for example, by rearranging the vectors Ki in space providing
the conditions of the spatial SDF KG correctness.

The spatial SDF method is implemented in GP. Then, the
genotype is coded by the matrix K, and the vectors Ki serve
the genes. For the traditional chromosome representation, the
columns of the matrix K should be flattened in a single string
g.

There are four basic reproducing operations in GP: a
creation that creates a new genotype, a duplication that gives
multiple copies of one individual, a mutation that is a
random change in the genotype, and recombination (cros-
sover) that combines two related genotypes into a new one.

When creating a genotype g of a spatial SDF, its gene
parameters si, ti are set at random so that the individual

belongs to the solution space g  𝔾. In this case, an
individual g is viable if the following conditions are satisfied.

  Ki,Kj (Ki  Kj, i  j), (1)

i.e, in the correct spatial SDF all the nodes are placed in the
space separately.

The following conditions are satisfied by the living
individual g:

  Ki,Kj(ki = kj, si = sj)  ti ≢ tj mod L, (2)

 Dj DDj (ti  0), (3)

 
j

bi,j Dj = (0,0,0)T , (4)

ie, they prove the schedule correctness. Here, L is the
iteration duration in clock cycles, DDj = (kj, sj, –wL)T is the

edge, which means the delay to w iterations, bi,j is the
element of the i-th row of the cyclomatic matrix of SDF, Dj
is the edge that belongs to some closed cycle of SDF. The
condition (2) assures that the resulting structure correctly
implements the circular schedule with the period of L clock
cycles providing that the operations from different iterations
can be overlapped. The conditions (3) and (4) provide the
correct transfer of variables from the previous iteration to the
present iteration of the algorithm. The conditions (1) – (4)
must be satisfied in other reproducing operations as well.

The duplication is used in the case of an effective
solution which properties should be used in the following
generations:

gn = duplicate(g), g  𝔾.

The mutation is performed to create a new viable
genotype by modifying an existing one. It happens either
randomly or determined:

gn = mutate(g), g  𝔾, gn  𝔾.

In the case of a gene (ki, si, ti), the parameters si, ti are
randomly changed so that the genotype g remains viable.
Similarly, a mutation of a group of genes (allele) is
performed.

The permutation is such a mutation when two genes of
the same type ki (ki, sp, tp) and (ki, sq, tq) are selected and their
parameters are swapped giving the genes (ki, sq, tq) and
(ki, sp, tp).

The recombination performs mapping 𝔾  𝔾 ↦ 𝔾. It can
happen either accidentally or deterministically:

gn = recombine(ga, gb) : ga, gb  𝔾 ⇒ gn  𝔾.

Two i-th genes (ki, sai, tai), and (ki, sbi, tbi) are selected for
the recombination from the two randomly selected genotypes
ga, gb. Then, the parameters of the first gene are replaced by
the parameters of the second one, giving the gene (ki, sbi, tbi)
of the new genotype gn. Similarly, the recombination of
alleles is performed.

The reproducing operations are illustrated by Fig. 1. The
spatial SDF subgraphs are considered in it. The exchanging
of the nodes in the space is shown by the red arrows.
Therefore, reproduction is the forming of a new population
by performing operations of creation, duplication, mutation,
and recombination. All four operations are performed arbit-
rarily. But in reproduction, the individual genes, that form an
intron, are not subject to change because they do not affect
the characteristics of the phenotype. Among them the genes
of input-output nodes are.

Fig. 1. Reproduction operations of the spatial SDF

The most complex task of the GP algorithm is the
implementation of the function Fitness(g). When using
spatial SDF, this function becomes much simple than in
other GP methods. For example, the hardware complexity is
estimated as the weighted number of PUs, which is
calculated as the power of a set of nodes with equal
coordinates ki.

IV. FRAMEWORK FOR GENETIC PROGRAMMING THE

DATAPATHS

A framework SDFCAD that implements the GP
algorithm for the spatial SDF has been developed. The GP
methods are typically differentiated due to different functions
Reproduce(g), which selects the individuals for the new
generation. Three GP methods are implemented in this
framework. In the method QValue, the i-th individual is
selected to a new generation with the probability

Pi =
Qmax – Qi


i
(Qmax – Qi)

 ,

where Qi is the cost function of the i-th individual, Qmax is the
maximum cost value, i.e., the worse fitness.

In the Roulette method, a ruler that simulates roulette is
created. The line starts from zero and consists of numerical
intervals, each of which corresponds to a specific individual.
The width of the interval for a given individual gi is equal to

i = 1/ i,

where i is the criterion value for the individual gi. That is,
the larger the value of the criterion, the smaller the interval.
The obtained intervals are plotted on a numerical line of a
roulette wheel from zero (not inclusive). A random number
is taken in the range from 0 to the end of the line. The
random number falls in the interval which corresponds to the
chosen individual. Then this interval is dropped from the line
and the other parents are searched for in the same way.

The method of the Roulette with nishes, is distinguished
in the following. A set K of niche coefficients is formed, in
which each individual gi is assigned a niche coefficient kHi. If
the Roulette method without niches is used, then all niche
coefficients are equal to kHi = 1.

The width of the interval for a particular individual in the
simulates roulette is equal to

i = kHi / i.

Thus, the niche ratio shows how much worse there are
individuals in the niche compared to the best individual in

the generation. Multiplying by kHi the width of the interval i
increases the chances of survival of individuals in this niche
in order to preserve the genetic diversity in the next
generation. If for the particular SDF it turns out that the
niches degrade quickly and their number decreases to zero,
then it is necessary to increase the niche coefficients.

Fig.2 illustrates some generation that is divided into

niches. It the generality function Sh(d, ) depending on the
vector criterion (f1, f2), where f1 is the hardware cost, and f2 is
the critical path delay. A thick line shows the boundary to
which the points of individuals are touched that are optimal
for Pareto.

Fig. 2. A generation divided into niches

Ellipses denote niches, which are distinguished by the

generality function Sh(d, ), which shows the extent to
which two individuals g1, g2 share the same place in 𝕏,
where  is a constant that specifies the radius of a section
that defines a cluster of related persons, the so-called niche.

The generality function Sh(d, ) is used to distribute the
individuals on a number of hills in the landscape of the
Fitness(g) function, and the hill receives a share of the
population that is proportional to its height. Therefore, the
Fitness(g) function should select the best individuals,
provided that the diversity of individuals is preserved so that
the convergence of the algorithm does not lead to a local
optimum. At the same time, the generality function makes it
possible to identify niches and concentrate outstanding
individuals from several niches in the archive that stores the
elite individuals. In addition, if the niche gathers a large
number of individuals with approximately the same
efficiency, it indicates a convergence to the local optimum.
To reduce it, it is necessary to throw out such individuals
from the generation at the stage of selection.

The optimization process takes two stages, each of them
implements the GP algorithm. At the first stage, the initial
spatial SDF is optimized. At the second stage, both the
register number and the multiplexer input number are
minimized according to the approach described in [6].

V. DCT PROCESSOR SYNTHESIS

The development of the application-specific DCT

processors is a typical test for the high-level synthesis

systems. The structures of the processors consist of an input

buffer memory, two pipelines that perform DCT of size 8,

and a buffer memory between them to transpose the matrix

of the intermediate results. The common control unit is

designed to generate the necessary address sequences and

control signals.

Fast algorithms for calculating one-dimensional DCT in

most cases are variants of Chen's algorithm [16]. These

algorithms are characterized by a minimum number of

operations (the record is 11 multiplication operations). But

due to the inhomogeneity of the algorithm graph, it makes it

difficult to build a pipelined DCT datapath.

As a test algorithm for DCT, a 8-point DCT is taken in

many works [17]. The spatial SDF of this algorithm is put in

the SDFCAD system as is shown in Fig. 3. The horizontal

axis in it represents the clock time, and the number of the

processing unit where the operator is done is represented by

the vertical axis. The algorithm contains 13 multiplication

operations and 29 additions. During the period of L = 8

cycles, it consumes 8 data and outputs 8 results through one

input port and the output port in the natural order.

Fig. 3. Spatial SDF of the 8-point DCT

The synthesis of the DCT processor was performed

according to the methods described above using the means

of the automatic synthesis program of SDFCAD. Initially,

the first generation of individuals was generated due to a

random gene assignment. The number of generations is

limited by 300. Although the chromosomes have random

coordinates of the node vectors, the resulting structures are

correct according to the relations (1) – (4), that is, each

individual is mapped to a correct but suboptimal structure

and schedule.

Then the GP algorithm executed. To analyze the work of

the evolutionary approach, the algorithm was performed

with three types of selection functions: Qvalue, Roulette,

and Roulette with niches (Roulette+N).

The GP evaluation is usually illustrated by a chart of the

fitness function v on the generation number. Fig. 4 shows

this function at the first stage of synthesis for three selection

functions.

Fig. 4. Fitness function at the first synthesis stage

Fig. 5. Fitness function at the second synthesis stage

Fig. 5 shows the same function at the second stage.

The analysis of the charts in Fig.4, 5 shows that the

algorithms at these two stages converge to a stable local

minimum after 40 generations. Table 1 shows the hardware

costs before (B) (the best individual in the first generation)

and after (A) the synthesis of the DCT processor by these

three methods, as well as the processor, whose SDF is

optimized manually.

TABLE I. HARDWARE COSTS BEFORE AND AFTER SDF

OPTIMIZATION BY DIFFERENT METHODS

Method Multi-

pliers

Adders Registers v

B A B A B A B A

Qvalue 7 3 18 9 96 28 584 480

Roulette 7 3 19 6 107 63 608 546

Roulette+N 6 3 19 11 101 38 562 506

By hand — 3 — 6 — 58 — 275

Fig. 4, 5 as well as Table 1 analysis shows that the GP
method is able to automatically optimize the pipelined
datapath with an improvement of the criterion by 11% –
 22%. The quality level of the synthesis results significantly
depends on the random definition of the initial generation
(deviation range is 10%). The solution quality found
automatically can be 80% worse than the solution found
manually by the method of spatial SDF. All proved methods
reduce the number of multiplication units, registers, adders to
the minimum values at the cost of increasing the number of
the multiplexor inputs. For example, the number of
multiplexer inputs is in twofold higher than in the processor
which is optimized by hand. The best results were achieved
by the Roulette method.

The hardware parameters of the synthesized DCT
processors are shown in Table 2 where they are compared to
the characteristics of 1D DCT processors, which are obtained
by other methods of synthesis. Therefore, the DCT
processor, which is synthesized automatically with the
method of GP in its main parameters is not worse than the
known examples of such processors designed by other
methods.

S

t

TABLE II. HARDWARE COSTS OF SYNTHESIZED DCT PROCESSORS

Method Adders Multipliers Registers

SDF folding [16] 6 3 29

Retiming and
scheduling [17]

7 3 34

Proposed, Roulette 6 3 63

Proposed, QValue 9 3 28

By itself, a 1D DCT processor has no practical

significance. But it is part of the 2D DCT processor, which

is the basis of the image compression processors. There are

many samples of such processors in the literature and Table

3 compares many of them. For comparison, a 16-bit 2D

DCT processor is shown which is developed on the base of

the synthesized 1D DCT processor, which is discussed

above.

TABLE III. HARDWARE COSTS OF DEVELOPED 2D DCT PROCESSORS

Processor FPGA serie Bitwidth LUTs Triggers DSP48

units

RAM

blocks

Maximum clock

frequency, MHz

Synthesized Virtex-2 16 1575 1747 6 0 155

Hannig [18] Virtex-2 16 1754 1152 8 1 130

Xilinx [19] Virtex-2 16 6832 7964 0 2 96

ALDCT [20] Virtex-2 8 599 — 6 0 230

Synthesized Spartan-3e 16 1531 1779 6 0 112

Kusuma [21] Spartan-3e 8 1750 1696 11 1 85

Pradeepthi [22] Spartan-3e 8 1239 1551 8 1 101

Synthesized Virtex-5 16 1041 1778 6 0 173

DCTAAN [23] Virtex-5 8 830 602 4 0 325

Pradnya [24] Virtex-5 8 1152 578 4 1 —

It is worth comparing the resulting processor with the

Hannig processor, which was synthesized using the PARO

framework [18]. This framework involves parallelizing the

algorithm represented by the loop nest using the loop

unfolding and loop folding techniques and solving the

scheduling problem by the classical method. Therefore, with

the same bit rate, the new processor has three fewer

multiplication units, 11% less hardware in look-up tables

(LUTs), and 19% more clock speed by increasing the

number of triggers by 1.5 times. This indicates the

advantages of the GP method of spatial SDF over other

methods of synthesis. Note that usually, FPGAs have the

triggers with the excess providing the high pipelining level.

Also, a comparison of the synthesized processor with

samples of manually optimized processors shows that this

processor is not worse than them, but in some respects, such

as maximum clock speed it is even better, providing the

increased bit rate. This is due to the fact that the synthesized

processor has a high level of pipelining, which is confirmed

by the excessive number of triggers used.

In addition, the experiments with the settings of the

compiler-synthesizer proved that the maximum clock period

is not improved when setting the mode of synthesis with the

retiming.

Thus, the DCT processor design has shown high

efficiency of the GP method for spatial SDF. These

processors can be used in all new photo and video image

processing devices, including those that require high-

bandwidth processing.

VI. CONCLUSIONS

A new method of GP for programming of spatial SDFs

has been developed, which differs in that SDF is optimized

by the method of genetic programming. In this method, the

representations of the chromosome, functions of

initialization of individuals, their suitability, selection, and

reproduction, as well as a two-stage optimization algorithm

are proposed.

The framework SDFCAD is designed to enter the spatial

SDF and its optimization by the proposed method of genetic

programming. The reproduction functions QValue, Roulette,

and Roulette with nishes are built in this framework. The

application allows the user to set such parameters as the

suitability function, the reproduction function with its

probability of mutation, the share of the elite set, the size of

the population.

A set of DCT processors has developed automatically

using the method of the genetic programming of spatial SDF

built in the framework which has utilized three reproduction

functions. The developed processors have a high ratio of

performance – hardware costs and the natural order of input

data and results. It found out that the function Roulette gives

the best results for the DCT processor synthesis. The

comparison of the automatically developed DCT processors

with samples of manually optimized processors and

processors designed by the known methods shows that this

processor is not worse than them, and have the maximum

clock speed.

The developed GP method needs improvement and

implementation in the automatic high-level synthesis tools.

REFERENCES

[1] S. Bhattacharyya, M. Wolf, “Tools and Methodologies for System-
Level Design”, in Electronic Design Automation for IC System
Design, Veriication, and Testing, CRC Press. 2016, pp. 39–57.

[2] G. Wang, W. Gong, and R. Kastner, “Operation Scheduling:
Algorithms and Applications”, in High-level synthesis: from
algorithm to digital circuit, Philippe Coussy, Adam Morawiec Ed-s.
Springer, 2008, pp. 231–255.

[3] C.T. Hwang, T.H. Lee, and Y.C. Hsu, “A formal approach to the
scheduling problem in high level synthesis”, IEEE Trans. Comput.
Aided Des., no. 10, 1991, pp. 464–475.

[4] R. Kruse, C. Borgelt, C. Braune, S. Mostaghim, M. Steinbrecher,
“Computational Intelligence. A Methodological Introduction”,
Springer, 2-nd Ed. 2016.

[5] J. F. Miller, “Cartesian Genetic Programming”, Springer, Berlin.
2011.

[6] А. M. Sergiyenko, V. P. Simonenko, “Method of synchronous data-
flow scheduling”, System Research and Information Technologies,
no. 1, pp. 51–62, 2016. DOI: 10.20535/SRIT.2308-8893.2016.1.06.

[7] M. Affenzeller, S. Winkler, S. Wagner, A. Beham, “Genetic
Algorithms and Genetic Programming. Modern Concepts and
Practical Applications”, Chapman & Hall / CRC, 358 p., 2009.

[8] I. Ouaiss, S. Govindarajan, V. Srinivasan, M. Kaul, R. Vemuri, “An
Integrated Partitioning and Synthesis System for Dynamically Recon-
figurable Multi-FPGA Architectures”, in: Proc. of the Reconfigurable
Architectures Workshop (RAW’98), Springer, Berlin/Heidelberg, vol.
1388, pp. 31–36, 1998.

[9] M.Grajcar, “Conditional Scheduling for Embedded Systems using
Genetic List Scheduling”, in Proc. 13th International Symposium on
System Synthesis (ISSS), Madrid, Spain, pp. 123–128, 2000.

[10] T. Weise, “Global Optimization Algorithms. Theory and
Application”, Version: 2009-06-26. 820 p. Available at http://www.it-
weise.de/

[11] R. Poli, “Evolution of Graph-like Programs with Parallel Distributed
Genetic Programming”, in Genetic Algorithms: Proceedings of the
Seventh International Conference, 1997, pp. 346–353.

[12] J. F. Miller, J. A. Walker, “Embedded cartesian genetic programming
and the lawnmower and hierarchical-if-and-only-if problems”, in
Genetic and Evolutionary Computation Conference, GECCO06,
Seattle, Washington, USA July, 2006, pp. 911–918.

[13] J. Husa, R. Kalkreuth, “A Comparative Study on Crossover in
Cartesian Genetic Programming”, in Proceedings 21-st European
Conference “Genetic Programming”, EuroGP, Parma, Italy, April 4–
6, 2018. LNCS, vol. 10781, 2018, pp. 203–219.

[14] O. Koncal, L. Sekanina, “Cartesian Genetic Programming as an
Optimizer of Programs Evolved with Geometric Semantic Genetic
Programming”, in Proceedings 22-nd European Conference, EuroGP
Genetic Programming, Leipzig, Germany, April 24–26, 2019, pp.98–
113.

[15] A. Sergiyenko, A. Serhienko, A. Simonenko, "A method for
synchronous dataflow retiming," IEEE First Ukraine Conference on
Electrical and Computer Engineering (UKRCON), Kiev, 2017, pp.
1015-1018.

[16] J. Nikara, J. Takala, D. Akopian, J. Saarinen, “Pipeline Architecture
for DCT/IDCT”. IEEE Int. Symp. on Circuits and Systems, (ISCAS
2001), May 6-9, Sydney, Australia, 2001. P. 902–905.

[17] S.-F. Hsiao, W.-R. Shiue, J.-M.Tseng, “A cost efficient fully-
pipelinable architecture for DCT/IDCT”. IEEE Trans. On
Communications, 1991. V. 39. No. 5. P. 640–643.

[18] F.Hannig, “Scheduling Techniques for High-Throughput Loop
Accelerators”. Erlangen, 2009. 295 P.

[19] 2-D Discrete Cosine Transform (DCT). V2.0. Xilinx Inc Product
Specification. 2002. March 14. 11 р. URL: http://www.xilinx.com.

[20] A. M. Sergiyenko, V. L. Lepekha, T. M. Lesyk, “Specprocessory dla
dvovymirnogo dyskretnogo kosynusnogo peretworennya”, Vistnyk
NTUU “KPI”, Ser.: Informatyka i obchysluvalna technika. V. 47.
2007. P. 230–233. (In Ukrainian). Сергієнко А. М., Лепеха В. Л.,
Лесик Т. М. Спецпроцесори для двовимірного дискретного
косинусного перетворення. Вісник НТУУ «КПІ», Сер.:
Інформатика і обчислювальна техніка: зб. наук. праць. Т. 47.
2007. С. 230–233.

[21] Kusuma E. D., Widodo T. S. FPGA implementation of pipelined 2D-
DCT and quantization architecture for JPEG image

compression. 2010 International Symposium on Information
Technology, Kuala Lumpur, 2010, pp. 1-6.

[22] Pradeepthi T., Ramesh A. P. Pipelined architecture of 2D-DCT,
quantization and zigzag process for JPEG image compression using
VHDL. International Journal of VLSI Design & Communication
Systems, V. 2, 2011. No. 3. P. 99-110.

[23] Uzenkov O., Sergiyenko A. Pipelined DCT/IDCT. Created
01.02.2010. Available at: https://opencores.org/projects/dct_idct

[24] Pradnya P. Parate1, Nilesh A. Mohota, “FPGA Implementation of
2D-DCT for Image Compression”. International Journal of Science
and Research (IJSR). 2013. P.142–145.

http://www.xilinx.com/
https://opencores.org/projects/dct_idct

