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Abstract—A method of the pipelined datapath synthesis 

which is based on the genetic programming is used for the 

discrete cosine transform (DCT) processor synthesis. The 

method is based on the representation of the algorithm by the 

spaced synchronous data flow graph (SDF), transferring it to a 

chromosome, and using the genetic optimization process. The 

method is implemented in the SDFCAD program system which 

is able to perform the input of algorithms specified by the SDF 

and automatically perform the synthesis of pipelined 

processors. The DCT processors synthesized by this system 

have less hardware volume and higher throughput than the 

similar processors configured in FPGA.  
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I. INTRODUCTION  

The system-level design is a new technology to speed-up 
the ASIC and FPGA design. But the system synthesis 
algorithms are much complex comparing to the logical or 
physical design [1]. The behavioral synthesis as a case of the 
system synthesis is based on mapping the behavioral 
algorithm to the device structure. This mapping is based in 
the scheduling an algorithm represented by a data flow graph 
(DFG) to the selected set of computational resources. During 
the behavioral synthesis, such greedy algorithms like force-
directed scheduling [2] give the frequent results but which 
are far from the optimum ones. The use of the integer linear 
programming approach enables the optimum solutions. But 
this method is not applicable to large DFGs [3]. 

The use of the genetic programming (GP) algorithms in 
the behavioral synthesis makes it possible to synthesize the 
processors of any complexity [2,4]. This approach is often 
used for the program development but sometimes for the 
hardware synthesis[5]. 

A method spatial synchronous dataflow graph (SDF) 
mapping into the structure configured in FPGA is proposed 
in [6]. Here, its modernization to GP is considered and the 
results of its application for the discrete cosine transform 
(DCT) processor synthesis are shown. 

II. GENETIC PROGRAMMING METHODS 

The genetic algorithm and its variation GP consider the 
search space 𝔾 which is abstracted to a set of all possible 

chromosomes, that is, the strings g𝔾 that encode specific 
solutions. The chromosome g encodes a specific genotype. 

The individual x𝕏 is a candidate for the solution from the 
solution space 𝕏. It is modeled as a phenotype 
x = Phenotype(g). The level of the fitness to the optimum 

solution is determined by the fitness function v(x), which 
moves the evolution process in the desired direction [4]. 

The optimization process consists in the evolution of 
several generations starting at initial random population 
Pop(0), and finishing with the population Pop(N) containing 
the optimum solution. The fitness value v is determined for 
the chromosomes g of each individual by calculating the 
efficiency criterion Fitness(g) and comparing it with other 

individuals of the set Pop(t), t  N. Each new generation is 
the result of the  function Select(Pop(t – 1)) which selects a 
set Popm of ps individuals that are suitable for the 
reproduction, and  function Reproduce(Popm), which 
generates a new population using create, mutate, crossover 
operations. 

GP most often deals with the optimization of DFG, which 
has a tree structure. This structure is coded as a bit vector 

which is used as the chromosome g𝔾 [7]. GP in various 
methods is performed only at the separate stages of the 
structure synthesis:  resource allocation, scheduling, resource 
assignment. Thus, in the SPARCS method, the schedule is 
searched using linear programming, and the FPGA resource 
allocation is found by GP [8]. In [9], GP is used to improve 
the list scheduling, and in [10] does the cycle parallelization. 

In several GP approaches the pair-based chromosome 
encoding is used, when an operator is related to some 
resource. The NSGA-II method uses the chromosome, in 
which the gene represents the operator-resource relationship. 
This method is based on the sequential deriving the structure, 
schedule, and operator assignment based on DFG [11]. 

In the PDGP method, the tree-like DFG is represented in 
the n-dimensional lattice. The evolution is subject to the 
operation nodes and the links between them taking into 
account the restrictions [12]. 

The ECGP method is used to find the parallel algorithms 
that are running on a system with limited hardware. This 
method is called as Cartesian GP method because the graph 
nodes are represented in a two-dimensional lattice with the 
Cartesian coordinates. The execution of an operator node that 
stands to the left precedes the execution of one that stands to 
the right. The chromosome is a series of integers that encode 
the nodes of the lattice. Numeric vertex tags, i.e., genes, 
encode links between nodes and their functions. This method 
has many different modifications [13, 14].  

The GP methods are adapted only to perform individual 
steps in the structural synthesis of computing devices, which 
are performed sequentially, so the optimization is often 
imperfect. In most methods, the result of the synthesis is a 
processor that does not perform the algorithm in the 



pipelined mode, or the resulting datapath operates only with 
a period of one cycle.  

Among all methods, the ECGP method is promising, in 
which the chromosomes encode the spatial position of the 
DFG operator nodes. Such encoding enables the effective 
finding of the fitness function.  

III. GENETIC PROGRAMMING OF THE PIPELINED DATAPATH  

The method of the pipelined datapath design is based on 
the representation of SDF in 3-dimensional space as a spatial 
SDF KG = (K, D, A). Here, K is the matrix of node-vectors Ki 
corresponding to the operators; D is a matrix of edge-vectors 
Dj that represent links between operators; A is the incidence 
matrix of SDF. In the vector Ki = (ki, si, ti)T, the coordinates 
ki, si, ti correspond to the operator type, the processing unit 
(PU) coordinate, and the time slot, in which the result of this 
operator is written to the register [6, 15].  

KG consists of the spatial configuration KGS = (KS, DS, A), 
which codes the device structure, and the event configuration 
KGT = (KT, DT, A) which does the schedule. Then, the 
mapping of SDF into the structure consists of splitting KG 
into KGS  and KGT by cutting the matrices K and D into 
submatrices KS, KT,  and DS, DT. 

The matrix K of a spatial SDF encodes a feasible 
solution. The pipelined datapath synthesis using the spatial 
SDF consists of constructing a number of optimized 
solutions KG and selecting the optimized solution due to an 
effectiveness criterion v(K). The optimized solutions are 
obtained by equivalent transformations of the spatial SDF, 
for example, by rearranging the vectors Ki in space providing 
the conditions of the spatial SDF KG correctness. 

The spatial SDF method is implemented in GP. Then, the 
genotype is coded by the matrix K, and the vectors Ki serve 
the genes. For the traditional chromosome representation, the 
columns of the matrix K should be flattened in a single string 
g.  

There are four basic reproducing operations in GP: a 
creation that creates a new genotype, a duplication that gives 
multiple copies of one individual, a mutation that is a  
random change in the genotype, and recombination (cros-
sover) that combines two related genotypes into a new one. 

When creating a genotype g of a spatial SDF, its gene 
parameters si, ti are set at random so that the individual 

belongs to the solution space g  𝔾. In this case, an 
individual g is viable if the following conditions are satisfied. 

  Ki,Kj (Ki  Kj, i   j ),   (1) 

i.e, in the correct spatial SDF all the nodes are placed in the 
space separately.  

The following conditions are satisfied by the living 
individual g:  

  Ki,Kj(ki = kj, si = sj )  ti ≢ tj mod L, (2) 

 Dj DDj (ti  0),    (3) 

 
j

bi,j Dj = (0,0,0)T ,   (4) 

ie, they prove the schedule correctness. Here, L is the 
iteration duration in clock cycles, DDj = (kj, sj, –wL)T is the 

edge, which means the delay to w iterations, bi,j is the 
element of the i-th row of the cyclomatic matrix of SDF, Dj 
is the edge that belongs to some closed cycle of SDF. The 
condition (2) assures that the resulting structure correctly 
implements the circular schedule with the period of L clock 
cycles providing that the operations from different iterations 
can be overlapped. The conditions (3) and (4) provide the 
correct transfer of variables from the previous iteration to the 
present iteration of the algorithm. The conditions (1) – (4) 
must be satisfied in other reproducing operations as well. 

The duplication is used in the case of an effective 
solution which properties should be used in the following 
generations: 

gn = duplicate(g), g  𝔾. 

The mutation is performed to create a new viable 
genotype by modifying an existing one. It happens either 
randomly or determined: 

gn = mutate(g), g  𝔾, gn  𝔾. 

In the case of a gene (ki, si, ti), the parameters si, ti are 
randomly changed so that the genotype g remains viable. 
Similarly, a mutation of a group of genes (allele) is 
performed. 

The permutation is such a mutation when two genes of 
the same type ki (ki, sp, tp) and (ki, sq, tq) are selected and their 
parameters are swapped giving the genes (ki, sq, tq) and 
(ki, sp, tp). 

The recombination performs mapping 𝔾  𝔾 ↦ 𝔾. It can 
happen either accidentally or deterministically: 

gn = recombine(ga, gb) : ga, gb  𝔾 ⇒ gn  𝔾. 

Two i-th genes (ki, sai, tai), and (ki, sbi, tbi) are selected for 
the recombination from the two randomly selected genotypes 
ga, gb. Then, the parameters of the first gene are replaced by 
the parameters of the second one, giving the gene (ki, sbi, tbi) 
of the new genotype gn. Similarly, the recombination of 
alleles is performed.  

The reproducing operations are illustrated by Fig. 1. The 
spatial SDF subgraphs are considered in it. The exchanging 
of the nodes in the space is shown by the red arrows. 
Therefore, reproduction is the forming of a new population 
by performing operations of creation, duplication, mutation, 
and recombination. All four operations are performed arbit-
rarily. But in reproduction, the individual genes, that form an 
intron, are not subject to change because they do not affect 
the characteristics of the phenotype. Among them the genes 
of input-output nodes are. 

 

Fig. 1. Reproduction operations of the spatial SDF 



The most complex task of the GP algorithm is the 
implementation of the function Fitness(g). When using 
spatial SDF, this function becomes much simple than in 
other GP methods. For example, the hardware complexity is 
estimated as the weighted number of PUs, which is 
calculated as the power of a set of nodes with equal 
coordinates ki. 

IV. FRAMEWORK FOR GENETIC PROGRAMMING THE 

DATAPATHS 

A framework SDFCAD that implements the GP 
algorithm for the spatial SDF has been developed. The GP 
methods are typically differentiated due to different functions 
Reproduce(g), which selects the individuals for the new 
generation. Three GP methods are implemented in this 
framework. In the method QValue, the i-th individual is 
selected to a new generation with the probability  

Pi = 
Qmax – Qi


i
(Qmax – Qi)

 , 

where Qi is the cost function of the i-th individual, Qmax is the 
maximum cost value, i.e., the worse fitness.  

In the Roulette method, a ruler that simulates roulette is 
created. The line starts from zero and consists of numerical 
intervals, each of which corresponds to a specific individual. 
The width of the interval for a given individual gi is equal to 

i = 1/ i, 

where i  is the criterion value for the individual gi. That is, 
the larger the value of the criterion, the smaller the interval. 
The obtained intervals are plotted on a numerical line of a 
roulette wheel from zero (not inclusive). A random number 
is taken in the range from 0 to the end of the line. The 
random number falls in the interval which corresponds to the 
chosen individual. Then this interval is dropped from the line 
and the other parents are searched for in the same way. 

The method of the Roulette with nishes, is distinguished 
in the following. A set K of niche coefficients is formed, in 
which each individual gi is assigned a niche coefficient kHi. If 
the Roulette method without niches is used, then all niche 
coefficients are equal to kHi = 1. 

The width of the interval for a particular individual  in the 
simulates roulette  is equal to 

i = kHi / i. 

Thus, the niche ratio shows how much worse there are 
individuals in the niche compared to the best individual in 

the generation. Multiplying by kHi the width of the interval i  
increases the chances of survival of individuals in this niche 
in order to preserve the genetic diversity in the next 
generation. If for the particular SDF it turns out that the 
niches degrade quickly and their number decreases to zero, 
then it is necessary to increase the niche coefficients.  

Fig.2 illustrates some generation that is divided into 

niches. It the generality function Sh(d, ) depending on the 
vector criterion (f1, f2), where f1 is the hardware cost, and f2 is 
the critical path delay. A thick line shows the boundary to 
which the points of individuals are touched that are optimal 
for Pareto. 

 

Fig. 2. A generation divided into niches 

Ellipses denote niches, which are distinguished by the 

generality function Sh(d, ), which shows the extent to 
which two individuals g1, g2 share the same place in 𝕏, 
where  is a constant that specifies the radius of a section 
that defines a cluster of related persons, the so-called niche. 

The generality function Sh(d, ) is used to distribute the 
individuals on a number of hills in the landscape of the 
Fitness(g) function, and the hill receives a share of the 
population that is proportional to its height. Therefore, the 
Fitness(g) function should select the best individuals, 
provided that the diversity of individuals is preserved so that 
the convergence of the algorithm does not lead to a local 
optimum. At the same time, the generality function makes it 
possible to identify niches and concentrate outstanding 
individuals from several niches in the archive that stores the 
elite individuals. In addition, if the niche gathers a large 
number of individuals with approximately the same 
efficiency, it indicates a convergence to the local optimum. 
To reduce it, it is necessary to throw out such individuals 
from the generation at the stage of selection. 

The optimization process takes two stages, each of them 
implements the GP algorithm. At the first stage, the initial 
spatial SDF is optimized. At the second stage, both the 
register number and the multiplexer input number are 
minimized according to the approach described in [6]. 

V. DCT PROCESSOR SYNTHESIS  

The development of the application-specific DCT 

processors is a typical test for the high-level synthesis 

systems. The structures of the processors consist of an input 

buffer memory, two pipelines that perform DCT of size 8, 

and a buffer memory between them to transpose the matrix 

of the intermediate results. The common control unit is 

designed to generate the necessary address sequences and 

control signals. 

Fast algorithms for calculating one-dimensional DCT in 

most cases are variants of Chen's algorithm [16]. These 

algorithms are characterized by a minimum number of 

operations (the record is 11 multiplication operations). But 

due to the inhomogeneity of the algorithm graph, it makes it 

difficult to build a pipelined DCT datapath.  

As a test algorithm for DCT, a 8-point DCT is taken in 

many works [17]. The spatial SDF of this algorithm is put in 

the SDFCAD system as is shown in Fig. 3. The horizontal 

axis in it represents the clock time, and the number of the 

processing unit where the operator is done is represented by 

the vertical axis. The algorithm contains 13 multiplication 

operations and 29 additions. During the period of L = 8 

cycles, it consumes 8 data and outputs 8 results through one 

input port and the output port in the natural order. 



 

Fig. 3. Spatial SDF of the 8-point DCT 

The synthesis of the DCT processor was performed 

according to the methods described above using the means 

of the automatic synthesis program of SDFCAD. Initially, 

the first generation of individuals was generated due to a 

random gene assignment. The number of generations is 

limited by 300. Although the chromosomes have random 

coordinates of the node vectors, the resulting structures are 

correct according to the relations (1) – (4), that is, each 

individual is mapped to a correct but suboptimal structure 

and schedule. 

Then the GP algorithm executed. To analyze the work of 

the evolutionary approach, the algorithm was performed 

with three types of selection functions: Qvalue, Roulette, 

and Roulette with niches (Roulette+N). 

The GP evaluation is usually illustrated by a chart of the 

fitness function v on the generation number. Fig. 4 shows 

this function at the first stage of synthesis for three selection 

functions. 

 

Fig. 4. Fitness function at the first synthesis stage 

 

Fig. 5. Fitness function at the second synthesis stage 

Fig. 5 shows the same function at the second stage. 

The analysis of the charts in Fig.4, 5 shows that the 

algorithms at these two stages converge to a stable local 

minimum after 40 generations. Table 1 shows the hardware 

costs before (B) (the best individual in the first generation) 

and after (A) the synthesis of the DCT processor by these 

three methods, as well as the processor, whose SDF is 

optimized manually. 

TABLE I.  HARDWARE COSTS BEFORE AND AFTER SDF 

OPTIMIZATION BY DIFFERENT METHODS  

Method Multi-

pliers 

Adders Registers v 

 

B A B A B A B A 

Qvalue  7 3 18 9 96 28 584 480 

Roulette 7 3 19 6 107 63 608 546 

Roulette+N 6 3 19 11 101 38 562 506 

By hand — 3 — 6 — 58 — 275 

 

Fig. 4, 5 as well as Table 1 analysis shows that the GP 
method is able to automatically optimize the pipelined 
datapath with an improvement of the criterion by 11% –
 22%. The quality level of the synthesis results significantly 
depends on the random definition of the initial generation 
(deviation range is 10%). The solution quality found 
automatically can be 80% worse than the solution found 
manually by the method of spatial SDF. All proved methods 
reduce the number of multiplication units, registers, adders to 
the minimum values at the cost of increasing the number of 
the multiplexor inputs. For example, the number of 
multiplexer inputs is in twofold higher than in the processor 
which is optimized by hand. The best results were achieved 
by the Roulette method.  

The hardware parameters of the synthesized DCT 
processors are shown in Table 2 where they are compared to 
the characteristics of 1D DCT processors, which are obtained 
by other methods of synthesis. Therefore, the DCT 
processor, which is synthesized automatically with the 
method of GP in its main parameters is not worse than the 
known examples of such processors designed by other 
methods. 
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TABLE II.  HARDWARE COSTS OF SYNTHESIZED DCT PROCESSORS  

Method Adders Multipliers Registers 

SDF folding [16] 6 3 29 

Retiming and 
scheduling  [17] 

7 3 34 

Proposed, Roulette 6 3 63 

Proposed, QValue 9 3 28 

 

By itself, a 1D DCT processor has no practical 

significance. But it is part of the 2D DCT processor, which 

is the basis of the image compression processors. There are 

many samples of such processors in the literature and Table 

3 compares many of them. For comparison, a 16-bit 2D 

DCT processor is shown which is developed on the base of 

the synthesized 1D DCT processor, which is discussed 

above. 

 

TABLE III.  HARDWARE COSTS OF DEVELOPED 2D DCT PROCESSORS  

Processor FPGA serie Bitwidth LUTs Triggers DSP48 

units 

RAM 

blocks 

Maximum clock 

frequency, MHz 

Synthesized Virtex-2 16 1575 1747 6 0 155 

Hannig [18] Virtex-2 16 1754 1152 8 1 130 

Xilinx [19] Virtex-2 16 6832 7964 0 2 96 

ALDCT [20] Virtex-2 8 599 — 6 0 230 

Synthesized Spartan-3e 16 1531 1779 6 0 112 

Kusuma [21] Spartan-3e 8 1750 1696 11 1 85 

Pradeepthi [22] Spartan-3e 8 1239 1551 8 1 101 

Synthesized Virtex-5 16 1041 1778 6 0 173 

DCTAAN [23] Virtex-5 8 830 602 4 0 325 

Pradnya [24] Virtex-5 8 1152 578 4 1 — 

 

It is worth comparing the resulting processor with the 

Hannig processor, which was synthesized using the PARO 

framework [18]. This framework involves parallelizing the 

algorithm represented by the loop nest using the loop 

unfolding and loop folding techniques and solving the 

scheduling problem by the classical method. Therefore, with 

the same bit rate, the new processor has three fewer 

multiplication units, 11% less hardware in look-up tables 

(LUTs), and 19% more clock speed by increasing the 

number of triggers by 1.5 times. This indicates the 

advantages of the GP method of spatial SDF over other 

methods of synthesis. Note that usually, FPGAs have the 

triggers with the excess providing the high pipelining level. 

Also, a comparison of the synthesized processor with 

samples of manually optimized processors shows that this 

processor is not worse than them, but in some respects, such 

as maximum clock speed it is even better, providing the 

increased bit rate. This is due to the fact that the synthesized 

processor has a high level of pipelining, which is confirmed 

by the excessive number of triggers used.  

In addition, the experiments with the settings of the 

compiler-synthesizer proved that the maximum clock period 

is not improved when setting the mode of synthesis with the 

retiming. 

Thus, the DCT processor design has shown high 

efficiency of the GP method for spatial SDF. These 

processors can be used in all new photo and video image 

processing devices, including those that require high-

bandwidth processing. 

VI. CONCLUSIONS  

A new method of GP for programming of spatial SDFs 

has been developed, which differs in that SDF is optimized 

by the method of genetic programming. In this method, the 

representations of the chromosome, functions of 

initialization of individuals, their suitability, selection, and 

reproduction, as well as a two-stage optimization algorithm 

are proposed.  

The framework SDFCAD is designed to enter the spatial 

SDF and its optimization by the proposed method of genetic 

programming. The reproduction functions QValue, Roulette, 

and Roulette with nishes are built in this framework. The 

application allows the user to set such parameters as the 

suitability function, the reproduction function with its 

probability of mutation, the share of the elite set, the size of 

the population. 

A set of DCT processors has developed automatically 

using the method of the genetic programming of spatial SDF 

built in the framework which has utilized three reproduction 

functions. The developed processors have a high ratio of 

performance – hardware costs and the natural order of input 

data and results. It found out that the function Roulette gives 

the best results for the DCT processor synthesis. The 

comparison of the automatically developed DCT processors 

with samples of manually optimized processors and 

processors designed by the known methods shows that this 

processor is not worse than them, and have the maximum 

clock speed.  

The developed GP method needs improvement and 

implementation in the automatic high-level synthesis tools. 
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