
Optimizing Kubernetes Resource Requests
Oleksandr Kovalchuk

National Technical University of Ukraine
”Igor Sikorsky Kyiv Polytechnic Institute”

Kyiv, Ukraine
me.olexandr.kovalchuk@gmail.com

Yuri Gordienko
National Technical University of Ukraine
”Igor Sikorsky Kyiv Polytechnic Institute”

Kyiv, Ukraine
yuri.gordienko@gmail.com

Sergii Stirenko
National Technical University of Ukraine
”Igor Sikorsky Kyiv Polytechnic Institute”

Kyiv, Ukraine
sergii.stirenko@gmail.com

Abstract—Due to how Kubernetes scheduler works, improper
CPU requests can lead to uneven load of servers and poor
performance of workloads. This study focuses on how to set the
optimal CPU request for Kubernetes workload. The presented
solution allowed to increase CPU utilization and free more
resources in cluster. Whereas it performed well for constantly-
loaded workload, but for oddly-loaded ones applying the recom-
mended values led to SLA degradation, while no significant CPU
throttling was noticed. In order to apply the results in production,
further research is required.

Index Terms—Kubernetes, containers, Prometheus, CPU usage

I. INTRODUCTION

Microservices attract more attention from industry and
academia as a new service-oriented architecture. It is believed
[1] that 91% of companies are using or have plans to use
microservices. This means that instead of having a single
monolithic application, companies deal with a lot of smaller
services, which are deployed separately. According to Dimen-
sional Research, 99% of companies which use microservices
face difficulties operating those. And 74% of questioned
companies plan to increase their microservice performance
management investment.

It is known that large companies usually have a large
number of microservices to support their business operations.
Therefore, the task of optimizing costs for computing re-
sources required to run microservices instances is a goal for
platform providers.

Lately, Kubernetes (k8s) platform has spread as de-facto
standard for deploying microservices in production. The plat-
form provides such features as observability, healing, and
scaling [2]. This is why k8s is chosen as a subject for the
research.

While the overall aim of the conducted research is to build
artificial intelligence assisted method to optimize resource
utilization for k8s, this study focuses on ways to assist oper-
ators (developers, system administrators) in properly defining
requests for CPU usage.

II. GLOSSARY

CPU Central processor unit
CPU Usage Measurement of how much CPU time is used by

running process.
CPU Utilization Relation between how much CPU is used to

how much CPU is available.

CPU Throttling Adjusting the amount of CPU time for the
process as part of resource management in order to
distribute CPU time between all running processes.

SLA Service Level Agreement. Defines allowed response
times and error rate from service.

III. LITERATURE REVIEW

As the final objective of the conducted research is to develop
a custom scheduler for Kubernetes platform, and beforehand
implementing, it is necessary to understand how the default
scheduler works. The main steps of pod (related group of
processes) scheduling process are described in [3]. These
steps are: filtering out unsuitable nodes, ranking nodes by
priority functions, and finally, scheduling pod to the node.
Most important predicates for node filtering as well as priority
functions are mentioned. However, this book chapter [3] gives
only a broad overview on scheduling strategy of the default
k8s scheduler. Neither scheduler extension nor the usage of
custom schedulers is described in the book, as well as no
measures of the scheduler effectiveness are provided.

While Kubernetes scheduler is responsible for assigning
processes to nodes, process scheduling within that node
(server) is done using native Linux instruments. Interface,
which controls resource allocation and isolation among groups
of tasks is called control groups (cgroups), which can manage
CPU, memory, network, disk I/O and various combinations of
these resources. Resource configuration in control groups is
done by editing cgroups subsystems parameters via synthetic
cgroup filesystem [4]. One of the subsystems, responsible
for CPU resource allocation is cpu subsystem. It operates
different parameters, which can be later used by Linux Fair
Scheduler (CFS). In order to ceil CPU usage, users can define
cpu.cfs quota us parameter. After process or processes group
used its CPU time defined in this parameter, they will be
throttled and will not be allowed to use CPU time during
given CFS period [5]. Kubernetes CPU limits are enforced via
cpu.cfs quota us mechanism. For Kubernetes CPU requests
another mechanism and another parameter is used, which is
called cpu.shares. Parameter defines relative share of CPU time
available to the processes in cgroup. For example, processes in
two cgroups which have similar cpu.shares value will receive
equal CPU time, but if cgroup A has cpu.shares = 1024 and
cgroup B has cpu.shares = 2048, then processes in cgroup B
will receive twice as much CPU time as ones in cgroup A [5].
Taking that into account, we can conclude, that improper usage



of CPU requests in Kubernetes can lead to some processes
have too small share and will be throttled.

Medel, Rana, Arronategui and Bañares in their research [6]
mentioned that pods are scheduled under interference from
other processes, and the interference must be considered. The
authors mentioned such sources of interference as CPU usage,
cache memory and memory bandwidth, network usage, and
I/O file system access. However, the description of benchmarks
the authors used is not definitive. Reference NET model
developed allows simulating Kubernetes resource manager
and determining application resistance to interferences, but it
requires real-world usage data, which is collected by running
benchmarks on the same node as application, and thus, is
poorly suitable for predicting application behavior. In the study
by Medel [7], the methodology to estimate the interferences
was proposed.

While not being related with scheduling, service autoscaling
provides possibility to react on workload changes and use the
optimal amount of resources to sustain the surge. It allows
keeping small amount of services running (thus, keeping
resource usage as low as possible) and scaling up instances
when the surge occurs. A set of key factors which should
be considered in the development of auto-scaling methods
is presented in [8]. The key factor analyzed in the article is
CPU usage threshold. The authors experimentally showed that
value between 80 and 100 for the threshold provides the best
scaling performance while not triggering over-provisioning
issue. Memory-based scaling is also discussed but proves
to be more expensive than CPU-based one as the former
usually requires the increased network bandwidth to transfer
data. Thus, using high-memory machines in advance needs
to be considered as a significant requirement in order to run
memory-intensive applications. While the research is complete
on these factors, they might not be suitable for all cases. For
example, these criteria are not sufficient to effectively scale
taskqueue workers, for such a scenario the different, custom
metric is required.

IV. METHODOLOGY

In order to set proper resource requests for Kubernetes
workloads we analyse workload’s actual resource usage
throughout last 14 days and calculate appropriate requests for
the workload. In this research CPU usage request is chosen as
the optimization target. Usage data are collected with the use
of Prometheus monitoring, which was set up in the cluster
by Prometheus operator [9]. Prometheus periodically scraps
metrics from Kubernetes nodes and stores those, providing
querying application programming interface.

The data is collected per-container for 14-days period. The
following query template is used to collect the data:

kube_pod_labels{
namespace="%(namespace)s",
%(labels)s

}

* on (pod)

group_right
rate(
container_cpu_usage_seconds_total{
namespace="%(namespace)s",
container="%(container)s"

}[1m]
)

Collected data format is the array of pairs (timestamp, cpu
usage). CPU usage is measured in seconds of single core usage
per second.

Recommended CPU request is calculated as rectified linear
unit (ReLU) of 95th percentile of the usage data over the
observed period (1). Recommended values are then stored in
the database.

Nrec = max(N0, P95(d)) (1)

where Nrec is the recommended value of CPU request, P95
is the 95th percentile, d is the usage data over the observed
period (14 days), N0 is the minimal request value, which is
equal to 10 milliseconds of single CPU core time for process
per second. Rectification is required in order to not set CPU
request to the too small value, as this may cause performance
issues. Value for rectification N0 = 10 was chosen empirically,
as with lower values, significant operational issues (applica-
tions were unable to respond even health check requests) were
observed.

Recommended values are applied to the workloads during
the subsequent workload creation or modification. For this
purpose mutating admission webhook is used. When workload
is created or modified, its specification is sent to webhook,
configured in cluster, and can be modified, based on the
webhook’s response, and only after those modification, work-
load is created or modified in cluster [10]. Changes are only
applied when recommended and actual requests differ more
than minimal threshold (same as used in ReLU). Workloads
are matched by namespace and name combination.

In order to analyse negative effects of the applied technique,
CPU throttling time is analysed. High throttling times mean
insufficient resources allocation for workload.

For the purposes of experiment, all workloads were changed
by webhook almost simultaneously. In the real-world scenario
it should be noted, that it might take some time for all
workloads to be redeployed and modifications to apply.

Experiments were conducted at night under constant low
load. Before and after making changes similar set of end-to-
end (E2E) tests was run in order to create load and test the
performance. Low load at the beginning of the experiment did
not affect its result, as for calculations data for much longer
period (14 days) were used.

V. RESULTS

For each of observed namespaces, we managed to reduce
requested CPU by 8-10 cores, which is 42 – 51% (Fig. 1)
of the previously requested CPU cores. Slight decrease of the
unused cores on the upper chart (timestamp: 05:40 – 05:45)



Fig. 1. Unused cores for tested namespaces. Lower is better.

which is latter restored is caused by shutdown and startup
actions elasticsearch pods performed.

Fig. 2. CPU requests and CPU usage charts for tested namespaces. The closer
requests (yellow) to actual usage (green) the better.

Application of calculated CPU requests increased CPU
utilization by approximately 7% (Fig. 2). Rapid decrease in
CPU requests on the charts corresponds to the moment of
redeploying applications with modified values.

Fig. 3. CPU throttling for tested namespaces. Lower is better.

As for the throttling, we noticed the slight throttling increase
in one of the tested namespaces, and the slight throttling
decrease in the other (Fig. 3). This might be caused by either
workloads tested (there were different kinds of workloads in
different namespaces) or nodes performance (tested cluster is
heterogeneous, and consists of nodes with different configu-

rations). Despite experiment was conducted on servers with
old kernel, which is affected by bug in CFS [11], CFS quotas
were disabled on testing environment, thus results were not
affected by this issue.

VI. DISCUSSION

As it can be seen from charts, setting CPU requests per
container to the values calculated from the previous CPU usage
metrics did not cause negative effect on performance, whereas
more free resources became available for other workloads. Ad-
ditionally, after modifying workload definitions we preformed
E2E testing to both generate load and check overall correct-
ness. E2E testing showed increase of the network timeouts,
meaning that lower requests actually caused increase of the
response time. Whereas we run E2E testing regularly, it is
either not often enough to impact overall CPU usage statistics.
One of possible reasons of such performance degradation is
that experiment was conducted on a limited set of processes
(only two namespaces of approximately 70 were affected),
thus making processes from other namespaces have bigger
value of cpu.shares, then observed processes.

At the same time constantly loaded workloads showed no
change in their performance, meaning that described method
is suitable for constantly loaded workloads.

Throttling spikes on the charts happened at the moment of
redeploying workloads with updated requests and correspond
to the increased CPU load on shutdown/startup.

As the described method displayed different efficiency for
different kind of workloads, the further investigation is re-
quired. Currently we investigate on different threshold values
and percentiles when calculating recommended requests value.
Nearest plans include analysing workloads type based on their
CPU usage and applying different recommendation strategies
for those. The last but not the least is investigating on different
ways to modify requests and matching workloads by their
characteristics instead of name.

VII. CONCLUSIONS

In this research we proposed a method of improving
mechanics of setting requests for workloads based on the
previous resource utilization of the workload. We conducted
an experiment which showed that our approach is suitable
only for constantly-loaded workloads. In order to properly
configure workloads, whose load varies from time to time
a lot a different approach is required. For constantly-loaded
workloads effect is noticeable, and shows that in some cases
it can save up to 50% of resources in Kubernetes cluster.

The further research will include modifying prediction for-
mula (1) and investigating different ways to predict optimal
CPU requests value for oddly-loaded workloads.

ACKNOWLEDGMENT

To V.H., for the support and involvement in testing the
described method on their live Kubernetes cluster. To N.G.,
for providing support with E2E testing.



REFERENCES

[1] D. Research. (2018) Global microservices trends. a survey of develop-
ment professionals. [Online]. Available: https://go.lightstep.com/rs/260-
KGM-472/images/global-microservices-trends-2018.pdf

[2] T. K. Authors, Kubernetes Documentation — What is Kubernetes?, 2020.
[Online]. Available: https://kubernetes.io/docs/concepts/overview/what-
is-kubernetes/

[3] D. Vohra, “Scheduling pods on nodes,” in Kubernetes Management
Design Patterns. Springer, 2017, pp. 199–236.

[4] P. Menage, Linux Kernel Documentation — CGROUPS, 2020.
[Online]. Available: https://www.kernel.org/doc/Documentation/cgroup-
v1/cgroups.txt

[5] R. Inc., Resource Management Guide — CPU, 2020.
[Online]. Available: https://access.redhat.com/documentation/en-
us/red hat enterprise linux/6/html/resource management guide/sec-
cpu

[6] V. Medel, O. Rana, J. Á. Bañares, and U. Arronategui, “Adaptive appli-
cation scheduling under interference in kubernetes,” in 2016 IEEE/ACM
9th International Conference on Utility and Cloud Computing (UCC).
IEEE, 2016, pp. 426–427.

[7] V. Medel, U. Arronategui, J. Á. Bañares, R. Tolosana, and O. Rana,
“Modeling, characterising and scheduling applications in kubernetes,” in
International Conference on the Economics of Grids, Clouds, Systems,
and Services. Springer, 2019, pp. 291–294.

[8] S. Taherizadeh and M. Grobelnik, “Key influencing factors of the ku-
bernetes auto-scaler for computing-intensive microservice-native cloud-
based applications,” Advances in Engineering Software, vol. 140, p.
102734, 2020.

[9] B. Brazil, Prometheus: Up & Running: Infrastructure and Application
Performance Monitoring. ” O’Reilly Media, Inc.”, 2018.

[10] T. K. Authors, Kubernetes Documentation — Dy-
namic Admission Control, 2020. [Online]. Avail-
able: https://kubernetes.io/docs/reference/access-authn-authz/extensible-
admission-controllers/

[11] X. Pang, “sched/fair: Fix bandwidth timer clock drift condition,” 2018.
[Online]. Available: https://bit.ly/343D5uH


