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Abstract— The paper describes actual methods of software 

optimization. Main attention is dedicated to two optimization 

methods: tiling and parallelization. The paper is focused on 

tailoring of tiling method to accelerate speed of software. The 

authors proposed to use discrete particle swarm optimization 

method to search better sizes of tiling method. Results of the 

investigations are shown. As a conclusion the authors 

distinguish an applicability of discrete particle swarm 

optimization method in the task of selection optimizations’ 

parameters. 
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I. INTRODUCTION  

During last years optimization of software was constantly 
solving task. Optimization of software allows improving one 
or several optimized parameters without loss of accuracy of 
computations [1]. 

In common global optimization task can be divided onto 3 
levels of optimization:  

1. High level optimization - optimization of algorithm 
level;  

2. Middle level optimization - optimization of commands’ 
sequence;  

3. Low level optimization - optimization of binary code 
and CPU command. 

Every level is important in common efficiency but these 
levels are related to the different areas of developing of 
software [2]. For example, high level is related to algorithmic 
developers but low level related more to compiler. 

Middle level consists of huge amount of different 
optimization methods. Some of them are embedded to 
compilers but some of them can be manually implemented by 
developers. Most of optimizations methods of this type are 
applied on computational loops because even small 
improvement in loop can cause great outcome. Some of such 
optimizations methods are as follow: fission/distribution, 
fusion/combining, interchange/permutation, inversion, loop-
invariant code motion, parallelization, reversal, scheduling, 
skewing, software pipelining, splitting/peeling, 
tiling/blocking, vectorization, unrolling, unswitching. Some 
of these methods can be used together but some of them are 
opposite. 

II. SOFTWARE OPTIMIZATION PROBLEM 

Any software can be considered as the finite quantity of 
source code parts. Any optimization can be used to all parts or 
several parts of source code. Optimization itself can be treated 
as a finite set of optimizations methods with finite set of 
optimization parameters. 

Let consider for every part of source code i that Fi are 
parameters that should be optimized, M is vector of the 
optimization methods, P is vector of the parameters of the 
optimization vectors.  

 𝐹𝑖 =  𝑎𝑟𝑔𝑚𝑖𝑛(𝑓(𝑀, 𝑃)) 

where Fi is the required parameter of the optimization, M is 

the vector of the optimization methods, P is the vector of the 

parameters of the optimization methods. argmin is defined as: 

 𝑎𝑟𝑔𝑚𝑖𝑛(𝑓(𝑥)) ∈ {𝑥|∀𝑦: 𝑓(𝑥) ≤ 𝑓(𝑦)}. (2) 

Optimization problem for entire program with N 
computational blocks can be defined as: 

 𝐹 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝑓(�⃗⃗� 𝑖 , �⃗� 𝑖)
𝑁
𝑖=1   

 𝐹 = 𝑎𝑟𝑔𝑚𝑖𝑛 (∑ 𝑓(𝑀𝑖
⏞
𝑟

, 𝑃⏞
𝑟

𝑖)
𝑁
𝑖=1 ) (3) 

It means that every particular part of the source code could 
have some unique set of the methods and its parameters to 
achieve the best possible productivity. 

There are many methods of the optimizations. In terms of 
time processing it’s obvious that better candidates for 
optimization are located in the computational loops. It’s 
because body of loop is executed many times. Thus, small 
improvement of the computational loop can lead to the 
significant effect. 

All operations are executed in the integer basis which 
defined and limited by loop indices. They define dimension 
and size of iteration space. Iteration space is a set of all integer 
vectors I = (I1, I2, …, In) that satisfy inequalities 

 Li ≤ xi ≤ Ui, 

where i=1, 2,..,n. Inequalities (4) define loops’ bounds and 
they restrict the iteration space by the convex polyhedron. 

It means that to optimize any part of the source code some 
particular methods of optimization with some parameters has 



to be chosen. Parameters which optimized can be evaluated 
sometimes after the compilation, for example it can be size of 
used program memory. Result of optimization in other cases 
can be performed only after the runtime execution of program. 
Execution time and energy consumption can be exactly 
obtained after the program run only. 

III. PARALLELIZATION AND TILING METHODS 

At the moment there a lot of optimization methods may be 
used to optimize the result and effectiveness of parallelization. 

One of the most perspective optimization methods is 
parallelization. This method allows dividing of single 
threaded code by several independent parts which can process 
simultaneously by big amount of computational units or more 
often by CPUs. Recent desktop CPUs usually have 4, 8 or 
even 16 cores. Server CPUs has tens and hundreds of cores. It 
means that by using proper programming parallelization 
paradigm it’s possible to dramatically boost a performance 
comparing with single core. 

Another one of efficient but not evident method is a tiling 
method. Tiling method divides a loop's iteration space into 
smaller blocks. This approach allows data used in a loop to 
stay in cache. It enhances cache reuse and reduces cache size 
requirements. A simple loop 

for (i=0; i<N; i++)   {   ...   } 

can be tiled with a tile size B by replacing it: 

for (j=0; j<N; j+=B) 

 for(i=j; i<min(N, j+B); i++)  {   ...   }, 

where min() is a function that returns the minimum of loop 
parameters. 

Different approaches can be used for mathematical 
description of computing loops. One of the most well-knows 
and a vivid method of representation of computing loops is a 
polyhedral model or method of polygons [3]. This model 
allows representing any computing loop as a certain 
mathematical abstraction level [4]. Next, such model can be 
modified in any way that does not change of output results. 
Also model can then be converted back to source code. This 
optimization approach is flexible with choice of optimization 
methods. At the same time, this approach to source code 
optimization has also advantage that developer can be 
concentrated on a task of loop transformations only, rather 
than developing highly complex binary code compiler. 
Compiler will perform all the additional optimizations at its 
own level after transformation to the optimized source code. 

 Another important feature of tiling method is that it can 
be used together with parallelization method very effectively 
if no dependencies between tiles [5]. 

For the verification of tiling method test bench was built. 
It includes 4 cores desktop Intel Core I5-4670K processor and 
Pluto software tool [6]. Pluto software tool allows 
automatically perform tiling method on selected loops. 
Several types of tiling methods are available which can be 
used stand alone or with parallelization simultaneously. As 
source of test algorithms a software Polybench test pack was 
used [7]. It includes 30 tests from linear algebra, simulation, 
matrix computing and so on. 

 

Fig. 1. Example of the implementing tiling method on two-dimensional 

loop 

As it was shown on fig. 1 size of tiles can be chosen in 
arbitrary way. But how tile of sizes will influence on 
processing time it’s not clear. To verify this fact the test 
application was ran on different sizes of tiles as it’s depicted 
on fig. 2.  

Horizontal axes are different tile sizes which were tested 
and vertical axe is time of the processing obtained for these 
sizes. As it is shown on the figure, processing time can vary 
significantly depending on sizes. It has to be noted that there 
is no some dependencies between sizes and time. Better set of 
tiles can be found only with some algorithm which can choose 
it with several iterations of search. 

 

Fig. 2. Example of processing time depending on the different tile sizes  

IV. DISCRETE PARTICLE SWARM OPTIMIZATION METHOD 

Searching of optimal tile sizes for fastest processing can 
be treated as task of discrete optimum search. In this case non-
smooth relation between parameters is present. For resolving 
such tasks some complicated methods are applied. 

Swarm algorithms is a sort of genetic algorithms which are 
used widely for solving of traveling salesman problem, 
assignment tasks, planning etc. [8].  

The main ideas of swarm behavior were proposed by 
Gerardo Beni and Wang Jing in [9]. A swarm is defined as a 
decentralized system, which consists of a set of simple 

 



elements that interact with each other and with the 
environment to achieve a predetermined goal in accordance 
with certain rules. The concept of swarm intelligence is built 
on an additive, synergistic effect, which is manifested when 
agents are combined into a system. Elements of the swarm are 
called particles.  

The model describing the decision of particles in a swarm 
is based on the position of each particle in the swarm and 

direction vector. The particle decides on movement based on 
three factors: its current speed, which causes the particle to 
continue moving and to explore new regions in the search 
area; knowledge of your own best state and the best state of 
the entire swarm or the nearest neighborhood of the particle. 

.

TABLE I.  DISCRETE PARTICLE SWARM OPTIMIZATION METHOD’S RESULTS 

Particles 

count 

Iterations Found 

minimum 

Searching 

time, sec 

Particles 

count 

Iterations Found 

minimum 

Searching 

time, sec 

4 4 0.083637 0.001169 128 4 0.077609 0.015661 

8 0.083637 0.001306 8 0.077609 0.027726 

16 0.079986 0.001847 16 0.077217 0.051691 

32 0.079523 0.002842 32 0.077086 0.098834 

64 0.079430 0.004958 64 0.077086 0.195971 

128 0.078543 0.008814 128 0.077086 0.391339 

256 0.078543 0.016424 256 0.077086 0.773381 

512 0.078543 0.031559 512 0.077086 1.551134 

1024 0.078543 0.063166 1024 0.076744 3.081073 

8 4 0.083637 0.001301 256 4 0.076955 0.048378 

8 0.083637 0.001817 8 0.076744 0.087142 

16 0.081941 0.002626 16 0.076744 0.162502 

32 0.080030 0.004480 32 0.076744 0.316789 

64 0.079785 0.007758 64 0.076744 0.626300 

128 0.078543 0.014601 128 0.076744 1.232822 

256 0.078543 0.028407 256 0.076744 2.462279 

512 0.078543 0.058010 512 0.076744 4.864909 

1024 0.078543 0.112901 1024 0.076744 9.697511 

16 4 0.078953 0.001891 512 4 0.076955 0.164594 

8 0.077609 0.002662 8 0.076955 0.294610 

16 0.077609 0.004504 16 0.076955 0.557133 

32 0.077609 0.007811 32 0.076744 1.084572 

64 0.077609 0.014814 64 0.076744 2.130530 

128 0.077609 0.027550 128 0.076744 4.227274 

256 0.077609 0.053936 256 0.076744 8.421257 

512 0.077609 0.109502 512 0.076744 16.808286 

1024 0.077609 0.220439 1024 0.076744 33.597718 

32 4 0.079196 0.003278 1024 4 0.076955 0.628595 

8 0.078119 0.005276 8 0.076955 1.121092 

16 0.078119 0.009532 16 0.076744 2.129166 

32 0.077910 0.017458 32 0.076744 4.148373 

64 0.077609 0.033737 64 0.076744 8.152203 

128 0.077609 0.067246 128 0.076744 16.216859 

256 0.077086 0.131577 256 0.076744 32.258004 

512 0.077086 0.255954 512 0.076744 64.408821 

1024 0.077086 0.510905 1024 0.076744 128.803013 

64 4 0.079041 0.006620     

8 0.079041 0.011354     

16 0.077609 0.020791     

32 0.076950 0.039425     

64 0.076744 0.078210     

128 0.076744 0.153229     

256 0.076744 0.304029     

512 0.076744 0.600386     

1024 0.076744 1.192888     

 



Set of particles is denoted by 𝑷 = {𝑃𝑖 , 𝑖 ∈ 1. . 𝑁̅̅ ̅̅ ̅̅ }, where N 
is a number of particles in swarm or population size. At 
t=0,1,2,… coordinates of the particle 𝑃𝑖    are determined by 

vector 𝑋𝑖,𝑡 = (𝑥𝑖,𝑡,1, 𝑥𝑖,𝑡,2, … , 𝑥𝑖,𝑡,𝑛  ), and its speed is a vector 

𝑉𝑖,𝑡 = (𝑣𝑖,𝑡,1, 𝑣𝑖,𝑡,2, … , 𝑣𝑖,𝑡,𝑛  ) . r1 and r2 are random values 

from 0 to 1. Initial coordinates and velocities of the particles 

𝑃𝑖  are 𝑋𝑖,0 = 𝑋𝑖
0, 𝑉𝑖,0 = 𝑉𝑖

0, respectively.  

 vi,t+1 = wvi,t + c1r1[mi,t − xi,t] + c2r2[gt − xi,t] (2) 

Particles change their coordinates by changing their 
velocities on every iteration. In case of integer coordinates x 
parameters are integer by default. In addition, velocities v 
should be rounded to the integer values. 

As far as nodes of iteration space are integer and thus size 
of tiles can be strictly integer Discrete Swarm Optimization 
Method was used. It means that particles and its speed was 
rounded to satisfy integer restrictions. 

V. RESULTS 

Parameters of Discrete Particle Optimization Method 
consist of number of particles, two coefficients and initial 
state. During of updating of coordinates of every particle a 
swarm follows to optimal value. Depending on particle count 
and number of iteration a different optimal value may be 
found. To evaluate which number of iteration and count of 
particle will lead to global minimum several set of tests were 
performed 

Applying Discrete Particle Optimization Method for 
searching of minimal execution time also is important in terms 
of required time to process. To find best set of number of 
iteration and particle count several tests were performed on 
data depicted on Fig. 3.  

Obtained data are shown in Table 1. Best achieved values 
and fastest searching time for particular particle count are 
highlighted with bold font. 

Obtained data are shown in Table 1. Best achieved values 
and fastest searching time for particular particle count are 
highlighted with bold font. 

 

Fig. 3. Test application for Discrete Swarm Optimization Method 

verification 

VI. CONCLUSION 

The paper describes the usage of Discrete Particle Swarm 
Optimization Method for searching of tile sizes to obtain 
minimal time of program execution. This method provides a 
searching of better tile sizes but depending on iteration 
number and particle count it gives different minimums.  

Global minimum was not found which equals to 0.075386 
seconds for all sets of particle count and iteration number. In 
the same time, obtained times are very close to the global 
minimum. Also it can be noted that for all tests an increasing 
of iteration number did not give improvement of the result. 

Discrete Particle Swarm Optimization Method can be used 
for searching of optimal tile size but searching of global 
minimum is not guaranteed.  
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