

Accelerating of Program Execution by Discrete

Particle Swarm Optimization Method

Sergii Sushko

PhD student

Pukhov Institute for Modeling in

Energy Engineering, NASU

Kyiv, Ukraine
sergii.sushko@gmail.com

Alexander Chemeris

Dept. of Modelling and Econometrics

Pukhov Institute for Modeling in

Energy Engineering, NASU

Kyiv, Ukraine
a.a.chemeris@gmail.com

Svetlana Reznikova

Dept. of Modelling and Econometrics

Pukhov Institute for Modeling in

Energy Engineering, NASU

Kyiv, Ukraine
svetlana.reznikova@gmail.com

Abstract— The paper describes actual methods of software

optimization. Main attention is dedicated to two optimization

methods: tiling and parallelization. The paper is focused on

tailoring of tiling method to accelerate speed of software. The

authors proposed to use discrete particle swarm optimization

method to search better sizes of tiling method. Results of the

investigations are shown. As a conclusion the authors

distinguish an applicability of discrete particle swarm

optimization method in the task of selection optimizations’

parameters.

Keywords— parallelization; software optimization; tiling;

discrete particle swarm optimization; loop optimization; energy

efficient computing

I. INTRODUCTION

During last years optimization of software was constantly
solving task. Optimization of software allows improving one
or several optimized parameters without loss of accuracy of
computations [1].

In common global optimization task can be divided onto 3
levels of optimization:

1. High level optimization - optimization of algorithm
level;

2. Middle level optimization - optimization of commands’
sequence;

3. Low level optimization - optimization of binary code
and CPU command.

Every level is important in common efficiency but these
levels are related to the different areas of developing of
software [2]. For example, high level is related to algorithmic
developers but low level related more to compiler.

Middle level consists of huge amount of different
optimization methods. Some of them are embedded to
compilers but some of them can be manually implemented by
developers. Most of optimizations methods of this type are
applied on computational loops because even small
improvement in loop can cause great outcome. Some of such
optimizations methods are as follow: fission/distribution,
fusion/combining, interchange/permutation, inversion, loop-
invariant code motion, parallelization, reversal, scheduling,
skewing, software pipelining, splitting/peeling,
tiling/blocking, vectorization, unrolling, unswitching. Some
of these methods can be used together but some of them are
opposite.

II. SOFTWARE OPTIMIZATION PROBLEM

Any software can be considered as the finite quantity of
source code parts. Any optimization can be used to all parts or
several parts of source code. Optimization itself can be treated
as a finite set of optimizations methods with finite set of
optimization parameters.

Let consider for every part of source code i that Fi are
parameters that should be optimized, M is vector of the
optimization methods, P is vector of the parameters of the
optimization vectors.

 𝐹𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑓(𝑀, 𝑃)) 

where Fi is the required parameter of the optimization, M is

the vector of the optimization methods, P is the vector of the

parameters of the optimization methods. argmin is defined as:

 𝑎𝑟𝑔𝑚𝑖𝑛(𝑓(𝑥)) ∈ {𝑥|∀𝑦: 𝑓(𝑥) ≤ 𝑓(𝑦)}. (2)

Optimization problem for entire program with N
computational blocks can be defined as:

 𝐹 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝑓(�⃗⃗� 𝑖 , �⃗� 𝑖)
𝑁
𝑖=1

 𝐹 = 𝑎𝑟𝑔𝑚𝑖𝑛 (∑ 𝑓(𝑀𝑖
⏞
𝑟

, 𝑃⏞
𝑟

𝑖)
𝑁
𝑖=1) (3)

It means that every particular part of the source code could
have some unique set of the methods and its parameters to
achieve the best possible productivity.

There are many methods of the optimizations. In terms of
time processing it’s obvious that better candidates for
optimization are located in the computational loops. It’s
because body of loop is executed many times. Thus, small
improvement of the computational loop can lead to the
significant effect.

All operations are executed in the integer basis which
defined and limited by loop indices. They define dimension
and size of iteration space. Iteration space is a set of all integer
vectors I = (I1, I2, …, In) that satisfy inequalities

 Li ≤ xi ≤ Ui, 

where i=1, 2,..,n. Inequalities (4) define loops’ bounds and
they restrict the iteration space by the convex polyhedron.

It means that to optimize any part of the source code some
particular methods of optimization with some parameters has

to be chosen. Parameters which optimized can be evaluated
sometimes after the compilation, for example it can be size of
used program memory. Result of optimization in other cases
can be performed only after the runtime execution of program.
Execution time and energy consumption can be exactly
obtained after the program run only.

III. PARALLELIZATION AND TILING METHODS

At the moment there a lot of optimization methods may be
used to optimize the result and effectiveness of parallelization.

One of the most perspective optimization methods is
parallelization. This method allows dividing of single
threaded code by several independent parts which can process
simultaneously by big amount of computational units or more
often by CPUs. Recent desktop CPUs usually have 4, 8 or
even 16 cores. Server CPUs has tens and hundreds of cores. It
means that by using proper programming parallelization
paradigm it’s possible to dramatically boost a performance
comparing with single core.

Another one of efficient but not evident method is a tiling
method. Tiling method divides a loop's iteration space into
smaller blocks. This approach allows data used in a loop to
stay in cache. It enhances cache reuse and reduces cache size
requirements. A simple loop

for (i=0; i<N; i++) { ... }

can be tiled with a tile size B by replacing it:

for (j=0; j<N; j+=B)

 for(i=j; i<min(N, j+B); i++) { ... },

where min() is a function that returns the minimum of loop
parameters.

Different approaches can be used for mathematical
description of computing loops. One of the most well-knows
and a vivid method of representation of computing loops is a
polyhedral model or method of polygons [3]. This model
allows representing any computing loop as a certain
mathematical abstraction level [4]. Next, such model can be
modified in any way that does not change of output results.
Also model can then be converted back to source code. This
optimization approach is flexible with choice of optimization
methods. At the same time, this approach to source code
optimization has also advantage that developer can be
concentrated on a task of loop transformations only, rather
than developing highly complex binary code compiler.
Compiler will perform all the additional optimizations at its
own level after transformation to the optimized source code.

 Another important feature of tiling method is that it can
be used together with parallelization method very effectively
if no dependencies between tiles [5].

For the verification of tiling method test bench was built.
It includes 4 cores desktop Intel Core I5-4670K processor and
Pluto software tool [6]. Pluto software tool allows
automatically perform tiling method on selected loops.
Several types of tiling methods are available which can be
used stand alone or with parallelization simultaneously. As
source of test algorithms a software Polybench test pack was
used [7]. It includes 30 tests from linear algebra, simulation,
matrix computing and so on.

Fig. 1. Example of the implementing tiling method on two-dimensional

loop

As it was shown on fig. 1 size of tiles can be chosen in
arbitrary way. But how tile of sizes will influence on
processing time it’s not clear. To verify this fact the test
application was ran on different sizes of tiles as it’s depicted
on fig. 2.

Horizontal axes are different tile sizes which were tested
and vertical axe is time of the processing obtained for these
sizes. As it is shown on the figure, processing time can vary
significantly depending on sizes. It has to be noted that there
is no some dependencies between sizes and time. Better set of
tiles can be found only with some algorithm which can choose
it with several iterations of search.

Fig. 2. Example of processing time depending on the different tile sizes

IV. DISCRETE PARTICLE SWARM OPTIMIZATION METHOD

Searching of optimal tile sizes for fastest processing can
be treated as task of discrete optimum search. In this case non-
smooth relation between parameters is present. For resolving
such tasks some complicated methods are applied.

Swarm algorithms is a sort of genetic algorithms which are
used widely for solving of traveling salesman problem,
assignment tasks, planning etc. [8].

The main ideas of swarm behavior were proposed by
Gerardo Beni and Wang Jing in [9]. A swarm is defined as a
decentralized system, which consists of a set of simple

elements that interact with each other and with the
environment to achieve a predetermined goal in accordance
with certain rules. The concept of swarm intelligence is built
on an additive, synergistic effect, which is manifested when
agents are combined into a system. Elements of the swarm are
called particles.

The model describing the decision of particles in a swarm
is based on the position of each particle in the swarm and

direction vector. The particle decides on movement based on
three factors: its current speed, which causes the particle to
continue moving and to explore new regions in the search
area; knowledge of your own best state and the best state of
the entire swarm or the nearest neighborhood of the particle.

.

TABLE I. DISCRETE PARTICLE SWARM OPTIMIZATION METHOD’S RESULTS

Particles

count

Iterations Found

minimum

Searching

time, sec

Particles

count

Iterations Found

minimum

Searching

time, sec

4 4 0.083637 0.001169 128 4 0.077609 0.015661

8 0.083637 0.001306 8 0.077609 0.027726

16 0.079986 0.001847 16 0.077217 0.051691

32 0.079523 0.002842 32 0.077086 0.098834

64 0.079430 0.004958 64 0.077086 0.195971

128 0.078543 0.008814 128 0.077086 0.391339

256 0.078543 0.016424 256 0.077086 0.773381

512 0.078543 0.031559 512 0.077086 1.551134

1024 0.078543 0.063166 1024 0.076744 3.081073

8 4 0.083637 0.001301 256 4 0.076955 0.048378

8 0.083637 0.001817 8 0.076744 0.087142

16 0.081941 0.002626 16 0.076744 0.162502

32 0.080030 0.004480 32 0.076744 0.316789

64 0.079785 0.007758 64 0.076744 0.626300

128 0.078543 0.014601 128 0.076744 1.232822

256 0.078543 0.028407 256 0.076744 2.462279

512 0.078543 0.058010 512 0.076744 4.864909

1024 0.078543 0.112901 1024 0.076744 9.697511

16 4 0.078953 0.001891 512 4 0.076955 0.164594

8 0.077609 0.002662 8 0.076955 0.294610

16 0.077609 0.004504 16 0.076955 0.557133

32 0.077609 0.007811 32 0.076744 1.084572

64 0.077609 0.014814 64 0.076744 2.130530

128 0.077609 0.027550 128 0.076744 4.227274

256 0.077609 0.053936 256 0.076744 8.421257

512 0.077609 0.109502 512 0.076744 16.808286

1024 0.077609 0.220439 1024 0.076744 33.597718

32 4 0.079196 0.003278 1024 4 0.076955 0.628595

8 0.078119 0.005276 8 0.076955 1.121092

16 0.078119 0.009532 16 0.076744 2.129166

32 0.077910 0.017458 32 0.076744 4.148373

64 0.077609 0.033737 64 0.076744 8.152203

128 0.077609 0.067246 128 0.076744 16.216859

256 0.077086 0.131577 256 0.076744 32.258004

512 0.077086 0.255954 512 0.076744 64.408821

1024 0.077086 0.510905 1024 0.076744 128.803013

64 4 0.079041 0.006620

8 0.079041 0.011354

16 0.077609 0.020791

32 0.076950 0.039425

64 0.076744 0.078210

128 0.076744 0.153229

256 0.076744 0.304029

512 0.076744 0.600386

1024 0.076744 1.192888

Set of particles is denoted by 𝑷 = {𝑃𝑖 , 𝑖 ∈ 1. . 𝑁̅̅ ̅̅ ̅̅ }, where N
is a number of particles in swarm or population size. At
t=0,1,2,… coordinates of the particle 𝑃𝑖 are determined by

vector 𝑋𝑖,𝑡 = (𝑥𝑖,𝑡,1, 𝑥𝑖,𝑡,2, … , 𝑥𝑖,𝑡,𝑛), and its speed is a vector

𝑉𝑖,𝑡 = (𝑣𝑖,𝑡,1, 𝑣𝑖,𝑡,2, … , 𝑣𝑖,𝑡,𝑛) . r1 and r2 are random values

from 0 to 1. Initial coordinates and velocities of the particles

𝑃𝑖 are 𝑋𝑖,0 = 𝑋𝑖
0, 𝑉𝑖,0 = 𝑉𝑖

0, respectively.

 vi,t+1 = wvi,t + c1r1[mi,t − xi,t] + c2r2[gt − xi,t] (2)

Particles change their coordinates by changing their
velocities on every iteration. In case of integer coordinates x
parameters are integer by default. In addition, velocities v
should be rounded to the integer values.

As far as nodes of iteration space are integer and thus size
of tiles can be strictly integer Discrete Swarm Optimization
Method was used. It means that particles and its speed was
rounded to satisfy integer restrictions.

V. RESULTS

Parameters of Discrete Particle Optimization Method
consist of number of particles, two coefficients and initial
state. During of updating of coordinates of every particle a
swarm follows to optimal value. Depending on particle count
and number of iteration a different optimal value may be
found. To evaluate which number of iteration and count of
particle will lead to global minimum several set of tests were
performed

Applying Discrete Particle Optimization Method for
searching of minimal execution time also is important in terms
of required time to process. To find best set of number of
iteration and particle count several tests were performed on
data depicted on Fig. 3.

Obtained data are shown in Table 1. Best achieved values
and fastest searching time for particular particle count are
highlighted with bold font.

Obtained data are shown in Table 1. Best achieved values
and fastest searching time for particular particle count are
highlighted with bold font.

Fig. 3. Test application for Discrete Swarm Optimization Method

verification

VI. CONCLUSION

The paper describes the usage of Discrete Particle Swarm
Optimization Method for searching of tile sizes to obtain
minimal time of program execution. This method provides a
searching of better tile sizes but depending on iteration
number and particle count it gives different minimums.

Global minimum was not found which equals to 0.075386
seconds for all sets of particle count and iteration number. In
the same time, obtained times are very close to the global
minimum. Also it can be noted that for all tests an increasing
of iteration number did not give improvement of the result.

Discrete Particle Swarm Optimization Method can be used
for searching of optimal tile size but searching of global
minimum is not guaranteed.

REFERENCES

[1] Kennedy, K., Allen, R.: Optimizing Compilers for Modern
Architectures—A Dependence Based Approach, Morgan Kaufmann
Publishers, San Francisco (2001)

[2] J. McConnell, Analysis of algorithms, 2nd ed. Jones & Bartlett
Learning, 2007.

[3] Clauss, P., Loechner, V.: Parametric analysis of polyhedral iteration
spaces. J. VLSI Sig. Proc. 19(2), 1–16 (1998)

[4] Darte, A., Vivien, F.: Optimal fine and medium grain parallelism
detection in polyhedral reduced dependence graphs. Int. J. Parallel
Prog. 25(6), 447–496 (1997)

[5] W. Bielecki and P. Skotnicki, "Insight into tiles generated by means of
a correction technique", The Journal of Supercomputing, 2018.

[6] Boundhugula, U., Ramanujam, J., Sadayappan, P.: Pluto: a practical
and fully automatic polyhedral parallelizer and locality optimizer,
Technical Report OSU-CISRC-10/07-TR70, Louisiana State
University, Columbus, OH (2007)

[7] Pouchet L.-N.: The polyhedral benchmark suite. [Online]. Available:
http://web.cs.ucla.edu/*pouchet/software/polybench/ 22 Sept 2016

[8] A. Engelbrecht, Fundamentals of Computational Swarm Intelligence.
Chichester, UK: John Wiley & Sons, 2005.

[9] G. Beni and J. Wang, "Swarm Intelligence in Cellular Robotic
Systems", in NATO Advanced Workshop on Robots and Biological
Systems, Tuscany, Italy, 1989.

