
Multimodal Data Integration and Processing
Method for Brain-Computer Interface Research

Nikita Gordienko1, Oleksandr Rokovyi2, Kostiantyn Kostiukevych3,
Oleg Alienin4, Sergii Stirenko5, Yuri Gordienko6

National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
Kyiv, Ukraine

1nik.gordiienko@gmail.com, 2rokovoy@comsys.kpi.ua, 3jjwpey@gmail.com,
4oleg.alenin@gmail.com, 5sergii.stirenko@gmail.com, 6yuri.gordienko@gmail.com

Abstract—Rapidly growing demand for investigations of hu-
man physical and mental activities is dictated by the necessity of
online monitoring and immediate diagnosis of health conditions
at home or in the field. Therefore, the need for a mobile system
appears for online biometric data collection by different sensors
in wearable electronics. A prototype system was developed to
collect multimodal data from many sensors and several sources.
The proposed system, based on the example of the integration
of electroencephalography (EEG) data, makes it possible to
capture such multimodal EEG data from the brain-computer
interface (BCI), to control, automatically mark data and store
them on the server. In this way, EEG data can be used later
for further analysis and can greatly facilitate the work of
researchers and health professionals. The main advantages of
the developed system compared to the available systems are its
openness, mobility, speed of collection, transmission, and security
of personal health data.

Index Terms—multimodal data, electroencephalography,
brain-computer interface, mobile system, data acqusition.

I. INTRODUCTION

Today, many researchers are dedicating their work to inves-
tigation of the brain activity using the electromagnetic waves
that the brain produces during mental activity for practical
purposes. Scientific research on brain activity requires the
processing of a large variety of data from different types
of sensors (such as electroencephalograph (EEG), tonometer,
thermometer, etc.) corresponding to different types of activity
(such as vision, sound, touch, smell, taste, etc.) at various
temporal and spatial scales and practically in the current time.
That is why the problem of collecting data from different types
of sensors and storing data for further access naturally appears.
The current integrated systems are usually very complex,
accessible only to professionals, and stationary often, that
makes complex their wide usage, especially in field conditions.
In this context the current need is to develop and create means
for recording, processing, analyzing, and interpreting all such
multimodal data, i.e., methods and means for integrating multi-
sensory (multimodal) data that will be accessible, easy to
use and mobile to carry out measurements under any field
conditions. The practical significance of the proposed work
is to provide a way of collecting and accessing such data,
which will facilitate the progress of the study and allow the
accumulation of data from different parts of the world. In this
way, researchers can share the collected data and conduct more

extensive research, and professionals will be able to examine
and collect patient data anywhere.

The work focuses on methods for collecting and processing
multimodal data from different sensors for the brain-computer
(BCI) use case. The main aim of the work is to systematize
knowledge on the development of complex systems based on
mobile application and cloud storage and to create proposals
for solving the problem in BCI-context. To reach this aim the
following task should be resolved:

• to consider the main practices used to build complex
systems based on mobile applications and cloud storage,

• to select the best approaches to building a data collection
system from different types of sensors,

• to create a multimodal data acqusition and processing
system,

• to analyze the performance and security of the developed
system and find ways to improve and optimize the
presented solution.

II. BACKGROUND AND RELATED WORK

A. Basic Electroencephalography Terms and Notions

Electroencephalography (EEG) is a method of electrophys-
iological monitoring for recording brain electrical activity. It
is usually non-invasive, that is, it does not enter the body of
the examined person, with electrodes arranged along the skin
of the head. EEG measures voltage oscillations resulting from
ion currents in brain neurons [1]. The EEG is usually used in
clinical settings to identify changes in brain activity that may
be useful in diagnosing brain disorders, especially epilepsy
or other seizure disorders. The EEG may also be useful for
diagnosing or treating such disorders [2]:

• brain tumor,
• brain damage from a head injury,
• brain dysfunction, which can have various causes (en-

cephalopathy),
• inflammation of the brain (encephalitis),
• stroke,
• sleep disorders.

Also, EEG is beginning to be used in various types of
applications to measure brain activity at home, and research is



underway to use data collected during the EEG as a method
of controlling external devices [3]–[6].

The electrical charge of the brain is maintained by billions
of neurons. Neurons are electrically charged (or “polarized”)
by membrane transport proteins that pump ions across their
membranes. Neurons constantly exchange ions with the extra-
cellular environment, for example, to maintain resting potential
and to spread the action potential. Ions of this charge repel
each other, and when many ions are ejected from many
neurons at the same time, they can push their neighbors with
a wave, push their neighbors, and so on. This process is called
bulk conductivity. When the ion wave reaches the electrodes
on the scalp, they can push or pull electrons on the metal
in the electrodes. Because metal easily conducts current, that
is, it picks up or gives off electrons, the voltage difference
between any two electrodes can be measured with a voltmeter.
Recording these voltages over time from different electrodes
installed on the body and creates an EEG result [7]. The
electrical potential generated by a single neuron is too small to
be recorded. Therefore, EEG activity always reflects the result
of the synchronous activity of thousands or millions of neurons
that have a similar spatial orientation. If the cells do not have
a similar spatial orientation, their ions do not align and do
not create waves that can be detected by the electrodes. It is
believed that the pyramidal neurons of the cortex create the
most significant, and therefore noticeable, an activity that can
be recorded by EEG. The main explanation for this feature is
the location of neurons and their simultaneous and cooperative
work. Because voltage field gradients fall with the square of
the distance, activity from deep sources is harder to detect than
currents near the skull [8]. The EEG of the scalp activity shows
oscillations at different frequencies. Some of these oscillations
have characteristic frequency ranges, spatial distribution, and
are associated with different states of brain functioning (e.g.,
awakening and different stages of sleep). These oscillations
represent synchronized activity across a network of neurons.
The neural networks underlying some of these oscillations are
already well researched and understandable to doctors and
specialists. On the other hand, the nature of many others is
not clear and is still being studied.

Our brainwaves change according to what we do and feel.
When dominant slow brain waves, we can feel fatigued, slow,
or dreamy. Higher frequencies are dominant when we feel
tension or anxiety. Brain processes are a complex phenomenon
but can be divided into certain groups. The brainwave velocity
is measured in hertz (cycles per second) and divided into
groups that define certain wave types, such as slow, moderate
and fast waves [9] [10].

B. Equipment

Several BCI devices are accessible now to a wide audience
and they are intensively used in research in various innovative
areas, such as information technology and so on. One of the
devices is MindFlex [11] [12]. This is an EEG-based device
whose main task is to train the brain based on ThinkGear
technology developed by NeuroSky. The device includes a

control unit and a wireless EEG headset. Brain signals are
detected by a metal electrode, narrowed to the forehead by
the monopolar method, and the zero point is the electrode
clamped on the earlobe. The signal processing unit, also
developed using ThinkGear NeuroSky technology using a
special analysis of brain activity, can determine the value
of concentration or attention. The NeuroSky MindFlex EEG
headset transmits the processed signals to the controlled unit
via a wireless network [13]–[15].

There are other analogs that have been used in other studies.
For example, one of the works considered uses a mobile
system that can run between 8 and 16 channels simultaneously.
This is the Ultracortex Mark 4 system with the extension
of Cyton Board and Daisy from OpenBCI [16] [17]. This
allows measurements to be made using either 8 channels with
a frequency of 250 GHz EEG data, or 16 channels with a
frequency of 125 GHz. The main advantages of the system
are its low cost, the ability to perform measurements from 16
channels, accuracy, and ease of measurement. The Bluetooth
data transfer protocol used in this device provides the ability to
collect data remotely without using additional wires. Another
advantage is the use of dry electrodes, which reduce the
adjustment time to a few minutes. As a result, data quality
deteriorates due to high sensitivity to movement artifacts and
higher resistance.

C. Methods

There are different methods for analyzing EEG data. This
section will look at different types from the simplest ones
that have been used and are obsolete to the use of the latest
technologies for data analysis, such as machine learning:

1) Multimodal data: Sensor fusion is a combination of
sensory data or data from different sources so that the in-
formation obtained is less uncertain than would be possible
if these sources were used separately. Data collected from
several different sources can be defined as multimodal because
they have different natures and complement each other. You
can distinguish a straight line synthesis, indirect synthesis, and
synthesis of outputs of the previous two. Direct synthesis is
the merging of sensor data from a set of heterogeneous or
homogeneous sensors, soft sensors, and sensory data history
values, while indirect synthesis uses sources of information
such as a priori knowledge of the environment and human
input. Sensor fusion is also known as (multisensory) data
synthesis and is a subset of information synthesis.

2) Frequency analysis: The signals are recorded from the
surface electrodes of the EEG of the scalp, which can be
represented in time or in terms of their decomposition into
sines and cosines in frequency measurement. The purpose of
frequency measurement is to describe the signal by decompo-
sition into sinusoids of different frequencies by the Fourier
transformation. That is, any signal can be considered as a
superposition of three sinusoids of different frequencies.

3) Time-frequency analysis: One of the main limitations
of the Fourier transform is that it does not use time as a
characteristic of the collected data. To calculate the Fourier



transform, the signal is considered to be stationary, and there-
fore the activity at different frequencies is constant throughout
the signal. In many cases, however, signals have different
functions that cannot be determined by the Fourier transform.
It is possible to overcome the lack of time resolution of the
Fourier transformation by breaking the data into pieces and
then calculating the power spectrum for each part or, even
better, using a time-evolving window to focus on different
segments of data. This procedure is called a short-term Fourier
transform (STFT) or window Fourier transform. To quantify
the frequency distribution at a given point in time and,
especially to see its evolution, we can calculate the entropy of
the power spectrum. Entropy is a measure of randomness or,
in other words, the information content of a signal. Random
signals are unpredictable, and each new data point provides
new information. On the contrary, according to the ordered
signals, new data points can be predicted from previous values
and, therefore, carry less information [18].

4) Wavelets: Wavelet is a mathematical function that allows
the analysis of different frequency components of data. The
thus obtained wavelet spectrograms differ fundamentally from
the usual Fourier spectra in that they give a clear indication
of the spectrum of different characteristics of the signals over
time. A wavelet transform is a transformation that views a
function (taken as a function from the time) in terms of
oscillations localized in time and frequency.

5) Artificial intelligence techniques.: Most modern EEG of
the brain is based on or uses machine learning algorithms for
data analysis. There is a wide variety of types of classifiers
used in this area. Over the years, many different techniques
and approaches to data processing have been developed and
discussed in various materials [19].

In recent years, the methods and techniques of machine
learning (ML) and in-depth learning or deep learning (DL)
[20], are gaining popularity and are used in various fields,
such as data analysis, machine vision, and so on. These data
analysis techniques have the very big potential and can replace
human EEG data analysis in the nearest future [21].

III. SYSTEM DESIGN AND DEVELOPMENT

A. Development Tools

For effective processing and monitoring of multimodal data,
it is extremely important to use some of the most appropriate
and carefully selected software, such as operating systems,
programming languages, development environments, libraries,
etc., to organize the collection, storage, and analysis of such
multimodal data. Java was chosen for the development of
the system due to its wide application in various fields and
large community, which can help solve problems during
development. Using a wide range of existing libraries it is
easy to create a mobile application for the system. Java will
also be used to write server service software. The selected
REST server software architecture allows efficient distribution
of functionality and workload, making the server part efficient
and scalable. The selected Spring framework provides a set
of libraries and approaches that facilitate the process of

software development and its subsequent maintenance and
modification. The considered HTTPS and Bluetooth data
transfer protocols allow secure and easy data exchange on
the Internet and wirelessly over short distances, which will
make the developed system mobile, convenient and cheap.
Different types of databases and approaches to storing large
data sets were considered and a data storage model for the
project was chosen. For the development of a small system,
PostgreSQL was chosen because of its highest data read speed,
as fast data access is an extremely important criterion for
the system. Among the various methods of authorization and
authentication, the JSON Web Token was chosen. Because, it
can be supported by various types of front-ends on different
devices (browsers via personal computers, mobile applications
on different platforms) and has a sufficient level of security to
ensure the security of user data.

B. Multimodal Data Acquisition System

The system consists of the following main components
(Fig. 1):

• server (cloud storage),
• mobile application,
• sensors and device controller in BCI device that collects

information from sensors to measure the brain activity.

Fig. 1. Diagram of the integrated EEG data acquisition and storage system.

The main purpose of the system is to collect data from sen-
sors through the BCI and accumulate them on a mobile device
for further use and analysis. At the end of the measurement
session, the data can be supplemented by a user comment or
additional data such as geolocation, etc. and should be stored
in the cloud storage for further use and analysis. That is, the
data of each session will be multimodal and supplemented
not only by various sensors but also by user-entered data.
For the convenience of data transfer from BCI sensors to
a mobile device, the Bluetooth wireless protocol is used.
The mobile application for communication and messaging
with the server will use the HTTP / HTTPS protocol at the
application level. For authentication and authorization, the



mobile application will use JWT technology, which ensures
the security of user data. The mobile application will act as a
end user interface. The application will allow you to monitor
the recording process and view sessions stored in the cloud
storage. To choose the right device, you should review the
technical specifications and the research conducted with them.
The review of these works gives the chance to compare 2
systems. Because the OpenBCI system offers 16 channels,
more electrode placement capabilities, and mobility (that can
be a significant advantage when designing a mobile system),
the Ultracortex Mark 4 system from Cyton Board was chosen.

C. Application and Controller Software for Data Acquisition

1) Transfer format with OpenBCI Cyton: The data is trans-
mitted to the device in the form of a stream of bytes, which
are divided into packets. Because each packet has a specific
format, the mobile application must read the byte stream and
divide it into packets. Each packet contains a header, a sample
counter, data from 8 channels, and then three values of the
accelerometer axis followed by a footer. Accelerometer data
is optional and does not need to be sent with each packet in
use. If not used, the bytes will be 0. This allows user-defined
auxiliary data to be sent to the last six bytes before the footer.

2) Read and store data in the mobile application: The data
is read from a connected USB transmitter, as if from a standard
serial port running at 115200 Baud. To optimize the reading
and processing process, the received packets are processed
in groups of more than X packets. During data processing,
subsequent packets continue to accumulate on the port. Each
group of packets is divided into separate packets based on
the value of the stop byte. The data from each packet is
sequentially processed and written to a file in CSV format for
further convenient processing. After the data collection session
is completed, all information is sent to the server for further
storage.

3) Mobile application interface: The interface of the
mobile application is based on several main screens, such as
the login screen, the main menu, the screen for reading and
writing data, and the screen for viewing the collected data.

D. Server Software

1) Registration, authentication, and authorization: The reg-
istration process involves filling out forms. Validation takes
place both from the front end (user interface to indicate
the wrong format or possible errors) and from the back
end (server software that rejects requests with incomplete or
incorrect information). The saved information is stored in the
database after successful validation. The user can then log in
to their account. The authorization and authentication process
uses a Spring mechanism such as The Security Filter Chain
[22]. Because JWT technology is used for authorization and
authentication, a proprietary filter has been developed that
reads the token from the JWT header and validates it. As
a result of successful validation, user information is added
to the context, which allows it to be used during query
processing. This allows you to build a RESTful service without

remembering the state and makes it easier to use the service
in the application.

2) Web service architecture: The web service uses the
REST architecture and therefore accepts 4 types of basic
queries with parameters. Queries with the GET method pro-
vide data to the user by checking whether the user has access
to them. All data is provided in JSON format and the data
in the form of a list is transmitted by pages on which a
certain number of objects are placed. The front end, which
displays data to the user, manages pages and requests for
new information. This helps to manage the list and not make
unnecessary requests by overloading the server and network.
Queries with the POST method pass information in the body
of the query for use or storage in the database. Queries with
the PUT method are used to edit the database and in this
application are available only to administrators and developers.
Queries with the DELETE method are used to delete database
records and are only available to administrators and developers
in this application.

3) Data acquisition and storage: The data is stored in
a database, which has several basic entities: user, session,
available sensors, data of each sensor.

• The user saves basic user information that is used in the
application and collected during registration.

• A session stores information about the session, the device
that was used to collect the information, the duration of
the information collection, the start and end dates of the
measurement, and so on.

• Sensor data uses the session ID to establish the session
during which it was collected.

• Available sensors store information about the name of
the data table, a brief description of the data and units of
measurement. Used to describe data on the user interface.

In this way, you can add new sensors and assemble and store
them without modifying the existing database architecture.

IV. EXPERIMENTAL RESULTS

EEG data were collected from the BCI device, namely
OpenBCI with Cyton Board (Fig. 2a) with 8 electrodes (“EEG
channels”): Fp1, Fp2, C3, C4, P7, P8, O1, O2. These channels
are defined by international standards [23] (Fig. 2b).

To test the performance, you should check how the data is
collected and displayed in the user interface. As an example of
measurements, the set of actions and data acquisition algorithm
used in the standard grasp-type experiment was chosen [24].
Thus, one data collection session is divided into 6 stages
during which the activity of the brain during various actions
is recorded. In this example, the person must perform the
following movements:

• HandStart - the beginning of the movement of the hand
to the object, such as the smartphone on the table,

• FirstDigitTouch - the researched person has to touch the
object, for example, a smartphone,

• BothStartLoadPhase - the subject should squeeze an ob-
ject, such as a smartphone on the table, with two fingers,



a)

b)

Fig. 2. The BCI device OpenBCI with Cyton Board used in the work (a) and
the scheme of EEG electrode locations on the human scalp (b).

• LiftOff - the subject lifts an object into the air with two
fingers, for example, a smartphone from a table to a
certain height,

• Replace - the subject rotates the object with two fingers
back, for example, returns the smartphone to the table,

• BothReleased - the subject releases two fingers, for
example, releases the smartphone on the table.

Continuous EEG raw data from the above mentioned actions
as time series are shown in Fig.3, where the EEG sensors
(“EEG channels”) are located equally along the vertical axis,
and the timeline is located along the horizontal axis.

At least two persons with different roles should be involved
in the data collection for the study. One person would be a
warden and would use the interface to start the data collec-
tion, while the other person would perform certain actions
according to the wardens commands. This division of roles is
necessary to ensure that the results of the measurements are
not distorted by other brain activities and that the observed
face is not distracted by other activities. In addition, data on
the calm state of the subject was collected to measure the
background level.

Usually, for analysis of channel-level data representation,
the response at each sensor in a topographical layout is very

b)

Fig. 3. Time sequence of EEG raw signals by channels (“EEG channels”)
with graphical representation of the above mentioned actions labeled in the
additional stimulo channels (“STIM channels”).

useful like it is shown in Fig.4, where 2D scalp topography
of evoked responses at sensor locations (EEG channels) is
presented for HandStart (Fig.4a) and BothReleased (Fig.4b)
actions. The locations of the evoked responses shown in Fig.4
correspond to EEG electrode locations (EEG channels) in
Fig.3.

a)

b)

Fig. 4. 2D scalp topography of the evoked responses at sensor locations (EEG
channels) for: a) HandStart and b) BothReleased actions.

Finally, such channel-level data representation allow to
construct and monitor the temporal dependence of the power
spectral density (PSD) that describes the distribution of power
into frequency components composing the signal across sensor



locations (eeg channels) for HandStart (Fig.5a) and BothRe-
leased (Fig.5b) actions.

a)

b)

Fig. 5. 2D scalp topography of the power spectral density (PSD) for the
evoked responses at sensor locations (eeg channels) for: a) HandStart and b)
BothReleased actions.

For the more detailed analysis and visual representation of
the above mentioned time sequences, their 2D channel-level
data representation is shown as 2D plots for HandStart (Fig.6a)
and BothReleased (Fig.6b) actions. From the qualitative point
of view, these time sequences are quite different for the
different actions (for example, for HandStart (Fig.6a) and
BothReleased (Fig.6b) here) and are widely used by medical
experts for the further analysis. But the characterization of
these data from the quantitative point of view is the big
current challennge due to variety and complexity of the data
obtained by BCIs, their dependence on many external factors
(even under such simple action scenarios), and absence of the
generally accepted strict and precise quantitative relationships
between actions and responses. But the current fast develop-
ment of artificial intelligence (AI) approaches, including ML
and DL methods, and their successful application for human
activity analysis by wearable electronics including BCI in
everyday activities [13], sport [14], [25], [26], health [15] and,
especially, elderly care [27], allows to leverage potential of AI
in BCI research also.

This difference is more pronounced when the same data are
plotted as the intensity image plots (Fig.7), where the time runs
along the horizontal axis, the channels go along the vertical

a)

b)

Fig. 6. The averaged time sequences for the evoked responses at sensor
locations (EEG channels) for: a) HandStart and b) BothReleased actions.

axis, and the amplitudes are shown by the color notation
where the amplitude values run from negative to positive and
it corresponds to shift from blue to red colors for HandStart
(Fig.7a) and BothReleased (Fig.7b) actions.

The developed application interface can potentially facilitate
the progress of the BCI-related research so that the observer
could control the data collection via a mobile device without
distraction. Since the data must be labeled for the successful
application of ML/DL methods, adding a state change function
to the application was very useful.

The observer had a choice of one of three potential states:
before a certain action, during a certain action and after a
certain action. Each time the mobile device received data from
the EEG device, the application checked the state selected by
the observer and added this information to the data collected
from each sensor. Thus, the data from the EEG device was
supplemented by user data, the selected state and sensor,
and data from the mobile device, such as exact time and
location, merging into one session and becoming multimodal.
When using available methods of collecting information, the
observer would have to use a personal computer, which may
be absent under certain conditions, and independently notice
the collected data using special software or manually.

Also, since the data has been transmitted and stored on
the server, it can be retrieved at any time and in any place,
provided that it is connected to the network. Additionally,
clients can be developed for other platforms that will make
it possible to collect data from more devices. The browser
client will make it easier to get the collected data for further
processing.

V. DISCUSSION AND CONCLUSIONS

Our previous attempts to characterize the single channel BCI
signals by statistical and ML/DL methods demonstrated the
limits of such characterization due to the small number of
data channels and very complex nature of brain activity [14],
[15], [25]–[27]. Moreover, the numerous current research cases
shown that increase of the number of channels is the critical

a)

b)

Fig. 7. The intensity image plots for the evoked responses at sensor locations
(eeg channels) for: a) HandStart and b) BothReleased actions.



condition for obtaining the reliable and reproducible results
[3]–[6], [28]–[31]. That is why the increase of the number
of BCI channels and the statistically representable number
of measurements are the critical conditions to reach the aim,
namely, the reliable and reproducible results in the our future
research.

In this paper, the problem of collecting and storing multi-
modal data from many different sources was considered in the
BCI use case. A solution to this problem has been proposed in
the form of a mobile system for collecting data from several
main components: a EEG data acquisition device, a mobile
device with an installed application, and server software.

The main methods of EEG data acquisition and analysis
and the main BCI-devices for EEG data collection available
on the market were analyzed. To create a convenient mobile
data collection system for BCI research, the Ultracortex Mark
4 system with a Cyton Board controller, a mobile device with
Android OS and server software developed in Java using a set
of Spring libraries were chosen. Bluetooth wireless technology
was used for data transfer, and a relational database was
used for data storage. To build the architecture of the server
software, the basic rules of building REST web services were
used. A JWT-based access system has been developed for
authorization and authentication. The result is a prototype data
collection system through which a user can collect data from
the EEG of an Ultracortex Mark 4 device and access them on
any device using a mobile application.

The developed system can be potentially used both by
researchers and healthcare professionals to perform monitoring
and diagnostics at home or under any field conditions.
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