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Abstract—Intensive research in the area of nanoscaled physics
opens new possibilities for the construction and fabrication of
nanoscale devices. A numerical experiment is a powerful tool to
analyze complex systems and flexibly check analytical predictions
in addition to experimental validation. Therefore usage of parallel
calculation is required to decrease the time of simulation.

Index Terms—Spin-lattice simulator, Landau-Lifshitz and
Newtonian equation, magnetoelastic system, parallel computing,
MPI, CUDA

I. INTRODUCTION

Soft magnetic materials open new possibilities in construc-
tion and fabrication of shapeable magnetoelectronics [1, 2], in-
teractive human-machine interfaces [3, 4], and programmable
magnetic materials [5, 6]. The shape of these materials deter-
mines their magnetic responses and can be controlled using
external electric or magnetic fields. Moreover, remote control
of the shape and 3D navigation of soft magnets stimulate
intensive investigations in the area of micro-robotics [7, 8].
Recent progress in the synthesis of organic and molecule-
based magnets opens new possibilities in the development of
nanorobots devices , e.g., for organic spintronics [9]. In this
context, the numerical experiment provides a third degree of
freedom in addition to analytics and experiment to investigate
fundamental and applied problems in the area of nanorobotics.
In magnetism, the choice of specific technique is dependent
on the materials and scales addressed by the given solver.

The micromagnetic simulation tools are widely used [10] for
ferromagnetic materials with the main challenge to compute
non-local magnetostatic interaction [11–14]. While flat films
and bulk materials can be effectively described by finite
difference integrators [15, 16], complex-shaped nanoparticles
usually require finite elements techniques [12, 17]. In the same
time, the micromagnetic approach can not properly handle
singular magnetic textures, which require a local atomistic de-
scription [18, 19]. Purely atomistic simulations are represented
by rapidly developing tools which can also address material-
specific properties [20] and provide a potentially higher tech-
nical flexibility in an adjustment for specific problems [20–
23], e.g., spin dynamics under influence of temperature, phase
transitions and finite size phenomena.

Here, we describe a spin-lattice simulation suite SLaSi
for addressing not only rigid crystal lattices, but also elas-
tic magnetic materials with exchange, Dzyaloshinskii–Moriya
interaction (DMI) and dipolar coupling between spins, which
is hardly accessible in conventional micromagnetic tools. The
numerical solution of motion equations is accelerated using
parallel computing with MPI and CUDA libraries. The correct-
ness of calculations is verified by comparison with available
analytical models.

II. MATHEMATICAL MODEL

Time evolution of magnetic moments in elastic lattice is
described by a system of coupled Landau–Lifshitz–Gilbert

dmi

dt
= −γmi × µ0H

eff
i + αmi ×

dmi

dt
, (1a)

and overdamped Newton equations

ηi
dri
dt

= −∂H
∂ri

+ Fi(ri, t), i = 1, N. (1b)

Here, mi(t) is the unit vector of magnetic moment at the i-th
lattice site with the radius-vector ri, γ > 0 is the gyromagnetic
ratio, µ0 is the magnetic permeability of vacuum, dimension-
less parameter α characterizes the Gilbert relaxation, ηi is the
coefficient of mechanical relaxation, Fi(ri, t) is the external
force, and N is the total number of magnetic moments.
The effective field Heff

i = −(µ0M0)
−1∂H/∂mi with M0

being the dimensional length of magnetic moment includes the
information about microscopic structure of the given magnetic
material with the Hamiltonian H
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Fig. 1. Triangular lattice is implemented for 2D magnetoelastic systems. In
the most general case, the triangle is a neighbor of 3 triangles with which
it has a shared edge. The scalar product of the normal vectors for each pair
of neighbor triangles is a separate term in the sum of the bending energy. If
some triangle is missing, it is excluded from the calculation.

The exchange integral Ji,j for the nearest neighbors takes
positive and negative values for ferro- and antiferromagnetic
coupling, respectively. Relativistic spin-orbit effects lead to an
appearance of magnetic anisotropy within the lattice. Here, we
consider the uniaxial single-ion anisotropy with coefficients
Kk
i and axes ean

i,k. The latter can be defined at each lattice
site. The dipolar interaction between sites with radius-vector
rij is essentially non-local and has the complexity O(N2)
of calculation. The locally broken inversion symmetry of the
lattice can be described by the Dzyaloshinskii–Moriya inter-
action with the DMI vector dij = −dji for the neighboring
spins. Different terms can be excluded from the consideration
in specific problems. The last term, Hel represents the elastic
properties of the lattice:

Hel =
1

2

∑
i 6=j

λi(|rj − ri| − a)2 +H1,2D
bend . (3)

The first term represents the stretching energy which con-
trols the distance between the neighboring sites with equi-
librium lattice constant a. The bending energy H1,2D

bend takes
different forms for chains arranged along space curves and
two-dimensional lattices living at curved shells. In the one-
dimensional case, it determines the change of angle between
two neighboring bond vectors ti and ti+1

H1D
bend =

1

2

∑
i

βi|ti+1 − ti|2, ti =
ri,i+1

ri,i+1
(4)

with βi being the bending coefficient and ti is a discrete tan-
gential vector at i-th node [24]. We describe flexible magnetic
shells using triangular lattice, see Fig. 1. The bending energy
for the 2D system reads

H2D
bend = −1

2

∑
i6=j

βin
4
i · n

4
j . (5)

Here, n4i is the normal vector to the triangle with vertex in
ri and j runs over nearest neighboring triangles.

III. SLASI ARCHITECTURE

SLaSi is a spin-lattice simulator that supports parallel com-
puting using multiple cores of central processing units (CPU)

Fig. 2. SLaSi architecture: reading of simulation parameters, integration of
(1) and saving output.

or graphical processing units (GPU). The program architecture
consists of three levels (see Fig.2):

(i) Data input involves a general configuration file with
setup of technical parameters for the numerical process and
common material parameters for the whole sample; text table
with site-specific parameters; Python script with functions
calling for the evaluation of time- and coordinate-dependent
parts of the Hamiltonian (2).

(ii) Numerical process. SLaSi is developed using C and
is linked with Python modules to provide a way for the
description of the initial magnetic texture and parameters as
well as on-fly evaluation of magnetic fields and mechanical
forces. For specific problems, calls of Python functions from
the main code can slow down the calculation process. To
provide a flexible user interface, the setup of the lattice
parameters from a tab-separated file is available. A parallel
computing is developed using MPI and CUDA libraries for
CPU and GPU, respectively. The compilation of the software
package is directed by CMake [25].

Evaluation of dynamical process (1) is performed by the
Runge–Kutta–Fehlberg method of 4-5 order (RKF45) [26]
with automatic step selection and the midpoint method
(MP) [27] with the fixed step. RKF45 is suitable for use
at CPU. The step control by comparison of the integration
results by 4-th and 5-th order schemes with precision value
allows a fulfillment of the required accuracy. Significantly
different order of dynamics velocity in mechical and magnetic
susbsystems requires tuning of the default precision for its
increase. The precision for elastic system should be 105..1010

times higher than the precision for the rigid one. Automatic
step selection using GPU requires to determine the maximal
torque applied to magnetic moments within the given lattice,
which slows down the CUDA processes itself. That’s why
we use MP for GPU computing with the pre-determined step
values for the required precision.

(iii) Output can be performed using the internal binary
SLSB or AVS UCD [28] formats. The SLSB is used to save
disk space for the large-scale computations and allows to
restart stopped numerical processes. AVS UCD is an open
file format for the description of unstructured grids and is
supported by open-source scientific visualization tools, e.g.,
ParaView [29].

IV. TESTING AND VERIFICATION

A conventional way to test micromagnetic solvers is to com-
pare solutions of the so-called “standard problems” between
different software packages [30, 31] and comparison with exact
solutions if they are known. We start from the consideration
of rigid systems and then consider flexible spin lattices.
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Fig. 3. Simulation error as a function of integration step for RKF45 and
middle point methods.
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Fig. 4. Acceleration factor as a function of MPI launched processes number
for physical systems that have different sizes.

A classical exactly solvable problem considers a macrospin
relaxation under the action of the given effective field [32].
If the source of Heff is the uniform exchange and easy axis
anisotropy, the dynamics of the magnetization reads

mz(t) =
mz0√

m2
z0 + (1−m2

z0)e
−2αωt

, (6)

where mz0 is the initial vertical component of m, and
ω = ω = KS/[(1+α2)~] the resonance frequency of the given
material. The final state in equilibrium is mz(t → ∞) = 1.
Fig. 3 represents the error of the numerical process as a
function of the selected integration step constant in time.
The given plot shows the straight line on a log-log scale
that means polynomial dependence of numerical error on the
integration step. As expected, RKF45 shows a higher precision
in comparison with MP, while the latter is twice faster in the
absence of automatic step selection.

Interaction of magnetic dipoles in spin lattice macroscopi-
cally is usually treated in terms of magnetostatic interaction,
while the anisotropic part of dipolar interaction is taken into
account in magnetocrystalline anisotropy. The specific numer-
ical implementation of this interaction is dependent on the
scale of magnetic systems, addressed by the concrete solver.
The O(N2) complexity allows an effective parallel computing
of the dipolar/magnetostatic interactions. To test our MPI and
CUDA implementation of the dipolar Hamiltonian we consider
the relaxation of the Landau state in a square nanodot [33], see
Fig. 4. The maximal performance depends on the nanodot size
(51× 51× (1, 3, 5) spins). The numerical experiment shows,
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Fig. 5. Normalized energy E/(µ0M2
s V ) as a function of the cube’s

edge size L/Lex for vortex and flower ground states with Ms being the
saturation magnetization, V is the volume, and Lex is the exchange length.
Micromagnetic simulator OOMMF and spin-lattice simulator SLaSi are used.

that the acceleration does not increase after 12 MPI processes
due to Amdahl’s law [34]. The same calculations using GPU
show an acceleration 8.67 times for the size of the system
51× 51× 1 in comparison with 1 CPU process.

To test the correctness of the dipolar interaction implemen-
tation, we solve the 3-rd standard µMAG problem [30] to
compare the transition of isotropic ferromagnetic cube from
vortex to flower states, see Fig. 5. These textures possess
the different topologies and cannot be transformed into each
other continuously. That’s why we start the relaxation process
from different initial states and compare their energies within
the stability regions. SLaSi simulations are compared with
their micromagnetic OOMMF framework [15]. The value of
normalized length to switch between two ground states is
slightly smaller from spin-lattice simulation in comparison
with OOMMF. This is a result of the anisotropic part of the
dipolar interaction which is not taken into account in OOMMF.

We consider a flexible ferromagnetic ring with an easy-
tangential anisotropy as a prototypical system with a signif-
icant contribution of the elastic term Hel. Such a quasi-one-
dimensional system possesses two ground states depending
on the magnetic and elastic properties as well as length [35].
The ground state of the long rigid closed chains corresponds
to a circular shape and vortex circulation of magnetization.
Otherwise, the so-called “onion” state is realized with the flat,
ellipse-like chain shape and almost uniform magnetization in
the plane of the chain [35]. Fig. 6 shows the comparison
of analytics [35] (solid line) and SLaSi simulations (dots).
The plot represents the component of the tangential vector
as a function of the reduced arc length along the ring. Two
flat regions correspond to the long sides of the elliptically
deformed chain.

V. CONCLUSIONS

We develop and test the spin-lattice simulation software
suite SLaSi for the investigation of rigid and elastic nano-
magnets. CUDA and MPI libraries are used for speed-up of
computations. SLaSi provides a convenient user interface that
includes configuration files, Python scripting, and output files
compatible with scientific visualization software.
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