
Automated Parallelization of Big Data Processing

on Multiple GPUs

Anatoliy Doroshenko

Dept. of Automation and Control in Technical Systems,

NTUU “KPI” and

Dept. of Computing Theory

Institute of Software Systems

Kyiv, Ukraine,

doroshenkoanatoliy2@gmail.com

Oleksii Beketov, Olena Yatsenko

Dept. of Computing Theory

Institute of Software Systems

Kyiv, Ukraine

beketov.oleksii@gmail.com, oayat@ukr.net

Abstract—The technique for semi-automatic parallelization of

loop operators is proposed. It is based on loop tiling and data

serialization and uses rewriting rules to transform programs. The

technique allows to extend GPU capabilities to deal with big data

volumes that outfit internal GPU memory capacity. It can be

applied to utilize clusters consisting of several GPUs.

Applicability criterion is specified and a semi-automatic proof-of-

concept software tool is implemented. The results of the

experiment demonstrating the feasibility of the proposed

technique are given.

Index Terms—big data, CUDA, general-purpose computing on

graphics processing units, loop optimization, parallelization

methods

I. INTRODUCTION

In scientific world, as well as in business, there is an
enormous amount of digital data that are referred to as big
data, and the volume of these data swiftly grows every day.
They come from numerical scientific experiments and
observations and require storage, processing, and analysis,
which can be done using high-performance computing
systems. The complication of computing problems and
improvements of hardware, on the other hand, resulted in the
appearance of multiprocessor systems, that are naturally suited
to employ parallel algorithms. Nowadays, many new parallel
platforms are emerging, one of the most popular is the
direction using graphics processing units (GPUs) as general-
purpose computing devices. As for now, GPUs have the
highest level of parallelism compared to other computing
devices. These devices can provide big performance boosts.
However, efficient programming of GPUs is not an easy task.
Developers should know many technical details about GPU
architecture.

The interest in graphics accelerators is ever-growing due to
their superior performance compared to conventional
processors, availability, and low energy consumption.
However, the development of appropriate tools is still a
problem. In particular, we consider the problem of modeling
parallel systems with heterogeneous components that contain
both CPU and GPU. Along with spreading of GPGPU
technology [1] that allows the employment of graphics
accelerators for solving computational tasks, new challenges
arise. As far as GPU is not a standalone device and is managed

by a host operating unit, it should be considered within the
context of heterogeneous computational platforms.
Composing programs for such platforms demands knowledge
in architecture and specific programming tools. Generally,
concurrent software development passes through the stage of
sequential implementation that becomes a starting point for
further platform-dependent and hardware environment specific
implementations.

Existing automatic code parallelizing tools [2–5] don’t
account for the limited amount of GPU’s onboard memory
space, while real-life problems demand huge amounts of data
to be processed. To embrace those cases of massive
computational tasks that involve big data, we propose a
technique that provides the ability to rip the loop and to split
the data and calculation operations.

This paper considers the problem of automated
parallelizing transformation of embedded loops for the target
platform of a computing system of heterogeneous architecture
that includes graphic processors. A technique for a semi-
automated parallelization method of nested loops for graphics
processors is proposed. The technique that allows to extend
GPU capabilities to deal with data volumes that outfit internal
GPU’s memory capacity is revealed and proved. The
technique involves loop tiling and data serialization and can be
applied to utilize clusters consisting of several GPUs [6, 7]. A
formal transformation of the computation loop nest that allows
the transition from a sequential algorithm to a parallel is
applied to solving matrix multiplication and N-body problems.

II. FORMAL MODEL OF LOOP TRANSFORMATION

Loop parallelization is a long-standing problem of
computational programming. Loops give a fair parallelization
opportunity for numerous scientific modeling problems that
involve numerical methods. This section introduces the idea of
loop transformation.

Let us consider a set of finite sets kI , 0 k N  , each set

consists of an ordered set of elements, i.e.

,0 ,1 ,# 1{ }
kk k k k k k k II i i i   ,

where k is a partial order over the set kI , # kI indicates the

number of elements of the set kI .

The for loop operator

 : ()k k kfor i I S i

is a form of notation of the following sequence

,0 ,1 ,# 1(), (), , ({)}
kk k k IS i S i S i  ,

where ()kS i is an expression containing the dependence on

the loop iterator ki .

Let D be a set of data with a subjective mapping
:T D D over it. Let us also introduce subjective mappings

:p I D and :q I D .

Let us consider the pairs of elements of the set D of the

form 2(,)a v D , for those elements a D , for which there

exist preimages of the set I under mappings p and q ,

respectively. Sets of all such pairs are denoted as

2{(,) | : () | ()}P a v i I p i a D v T a D      

and

2{(,) | : () | ()}Q b w i I q i b D w T b D       .

Hereinafter, the pair 2(,)a v D will be referred to as a

data cell, a D a cell address, and v D a cell value.

Mapping T provides a cell value by cell address. The set of
all cells involved in the calculations is called memory.

Let :F I D D is the transformation mapping of the

data set. Let us consider the nested loop of the following form:



1 1

0 0

 :

 :

 ...

 :

 () : (, ()),

N N

N N

for i I

for i I

for i I

T q i F i T p i

 







  

 

where symbol 0 1 0{ , , , }N Ni i i i I I I     denotes a

vector of iterators. The number of operators involved in the
loop is called nesting depth.

Nesting depth for the loop (1) is equal to 1N  . Sets P

and Q are called a set of initial data and a set of final data of

the loop (1), respectively.

The loop iteration is a calculation that executes a loop for a

certain fixed value of the vector of iterators i , which acquires

value from the set 0 NI I . We assume that iterations are

independent by data:

 , , : () (), () ()i j I i j p i q j q i q j      

i.e. no iteration of the loop changes the initial data of other
iterations, and different iterations do not change the values of
the same cells.

Having numbered the elements of the sets kI according to

the lexicographic order, let us proceed to the loop with a linear
counter by performing the following substitution:

 0 #N N n nfor i I for i I   ,

where counter ni changes with a unit step. Let us perform

decomposition of the loop nest. To achieve this, at first we
perform the following substitution for each for operator:

 0 #

 0 :

 (# ,) min ((1) (# ,),),

n n

n n

n n n n n n n n

for i I

for s S

for s L I S i s L I S S

 

 

  

where

 0, mod(,) 1 a b

a
L a b

b


 
   

 
,

    denotes the integer part of a quotient, δ is Kronecker

symbol, nS is the desired number of steps to subdivide the

loop, 1 #n nS I  . This transformation is commonly known

as loop tiling [8]. After subdivision of subloops and
regrouping, the loop takes the form, in which an internal loop
is similar to the initial loop but of a reduced scale. We keep
internal 1N  loops intact and group outer loops:

 0

0 :

 ();

N

i
i

for e S

i g e



 




 

Here ()g e is a mapping that restores the vector of

counters i


 and is constructed in the following way:

,mod)(00 Seeg 

1 1

1 0 0

() () ,
jN k

k j l j
j k l j

g e e g e S S
 

   

  
   

 
   

   ,0 Nk 

1

0

() ,
N

N j
j

g e e S




 
  
  






N

k
kSe

0

0 .

The obtained loop (3) maintains the sequence of the vector
of counters equal to the sequence produced by the initial
loop (1).

Let’s denote the inner 1N  loops of the cycle (2) along

with)(eg as a)(ekernel . We intend to delegate the kernel

execution to GPU and to run it concurrently thus diminishing
the depth of the inner loop nest. As the GPU’s memory space
is isolated from the host’s device one, we introduce serialize
operation that is to prepare the input data required to perform
calculations for the step e and deserialize operation to store
the output data processed by GPU. The further implementation
of these procedures is out of our scope and depends on the
particular problem. Finally, we get:



0

 (, ,);

 2 ();

 (, ,);

 2 ();

 (,

0 :

,);

N

i
i

serialize e inputData dataPull

transfer device inputData

kernel e in

f

putData outputData

transfer host outputData

deserialize e outputData da

or

t

e S

aPull



 

 

Iterations of the loop (4) can be distributed over
concurrently running threads through involving several
additional data exchange buffers. This approach could be
applied to any distributed memory computational system, e.g.
GPU cluster or heterogeneous cluster of any other
computation empowered devices. To preserve equivalence in a
sense of output results equality for the same given input data,
Bernstein’s [9] conditions must be met. This roughly means
that iterations should not overwrite the other’s iterations input

data and should store their output data apart. The set of kS

(Nk 0) is the transformation’s tunable parameters that

are chosen in a way to satisfy Bernstein’s conditions and to
optimize processing time that is to find a trade-off on time
spent on data preparation, transfer, and kernel execution.
These timings depend on the input and output data load size
which is restricted by the total available amount of GPU’s
memory and hardware configuration parameters, such as input
and output memory transfer rate and GPU compute
capabilities.

The loop of the initial form is a form of notation of the
data transformation sequence, given by the mapping F .
However, a loop in this form is not suitable for execution by a
parallel computing device, because for operator defines a

sequential computational procedure for individual iterations.
To perform the parallelization of the loop, it is necessary to
properly distribute the iterations and corresponding data
between the threads. The loop in the parallel form will be
equivalent to the original loop if the above condition (2) holds.
Let us prove this statement.

Let there is a procedure P performing data operations. Let
us classify the memory cells used by this set of commands
according to the mode of their use:

1) , W W D denotes a set of cells which are only read,

i.e. :d W 

 : () ;i I q i d    

 : () ;i I p i d    

2) , X X D is a set of cells which are only written, i.e.

:d X 

 : () ;i I q i d    

 : () ;i I p i d    

3) , Y Y D is a set of cells which are read and then

written:

 : , , : () , () ;d Y i j I i j p i d q j d       

4) , Z Z D is a set of cells which are written and then

read:

: , , : () , ()d Z i j I i j q i d p j d      .

Let there are three procedures 1P , 2P and 3P , the

corresponding indices denote their sets of cells. Consider two
algorithms that perform these procedures: the first calls the
procedures sequentially one after the other, and the second
performs the first two procedures simultaneously, and then the
third. According to Bernstein [9], the following conditions
must be met in order for the results of sequential and parallel
algorithm calculations to coincide:

   1 1 1 2 2 2W Y Z X Y Z      ,

that is, those memory cells that are read by the first procedure
do not intersect with those cells that are written by the second
procedure; condition symmetric to the previous one

   1 1 1 2 2 2X Y Z W Y Z      ,

and

 1 2 3 3X X W Y    ,

that is, those cells that are used by both the first and the
second recording procedures simultaneously will not be
subsequently read without preliminary rewriting.
Summarizing Bernstein’s conditions for a set of procedures

iP , 0 i C  , we obtain:

 0 ,i j C   :

() ()i i i j j jW Y Z X Y Z      ,

() ()i i i j j jX Y Z W Y Z      ,

()j j C CX X W Y    .

On the one hand,

() : ()d W Y Z i I p i d      .

On the other hand,

() : ()d W Y Z i I q i d      .

Therefore, the first two Bernstein conditions are equivalent
to the following:

 , : () ()i j I p i q j   .

Since condition (8) requires

 , : () ()i j I p i p j   ,

then

i jX X  ,

and therefore the condition (9) also holds. Thus, conditions
(7), (8) are equivalent to the combined conditions of Bernstein
and ensure that the memory status of the device does not
depend on the order of operations. Therefore, the statement is
true.

III. PROGRAM EXECUTION FLOW

In this section, we observe an execution flow of a program
parallelized with the help of the proposed method. Consider
the computing node that consists of one multicore CPU and
one GPU. Modern GPUs support direct memory access
technology thus allowing to carry out data transfer and kernel
execution asynchronously. To optimize the data exchange
process, dual buffering is involved. Four buffers at both host
and device sides are involved — two for the input and two for
the output data exchange. On the host side, computations are
made by two threads executing kernel , serialize and

deserialize procedures simultaneously. One of them

serializes the input data and fills the input data buffer, then
transmits the buffer to the GPU and launches the kernel, and
the other receives output data buffer from GPU and
deserializes it. Besides the calculations, GPU carries out
bidirectional data transfers through the asynchronous data
transfer mechanism. Computations are performed in three
stages — initial, cyclic and finalizing.

At the starting point, data buffers are empty and GPU
waits for the data transfer. It doesn’t matter what thread will
carry out the initial step, as all the operations are executed

sequentially and asynchronous transfer mode is not involved.
At the initial step, CPU serializes input data buffers of the first
two iterations and transfers the buffer containing the first
iteration data to the accelerator.

After the initial step, the cyclic stage starts. The execution
flow is shown in Fig. 1. The iteration number is given after the
buffer’s name. One step of the loop is divided into odd and
even parts. Both odd and even parts of the first step skip
deserialization as the host output buffers are empty yet. At the
odd part of the first step, the accelerator-to-host transfer is
omitted too. Meanwhile, the accelerator performs
computations over a current buffer, host threads fetch data
buffer from a previous step, deserialize penultimate step
buffer, send input data buffer, and serialize buffer for the next
step. In one step, two kernel launches are executed. After each
part (odd or even) is finished, the processes are synchronized.
Two final steps depend on the actual number of kernel
launches. If the number of kernel launches is odd, the final
step of the cyclic part excludes an even part and does not
involve serialization and host-to-accelerator transfer, and the
even part of the penultimate step skips serialization.
Otherwise, if the number of launches is even, the last loop step
is full, but the even part of the final step omits serialization.
The final step deserializes output data buffer transferred at the
last loop step and then fetches and deserializes the final output
data buffer consequently finishing the computations.

Fig. 1. Execution flow diagram of the cyclic stage of the concurrent program
for the system of one accelerator and two control flow threads with four data
exchange buffers

IV. APPLICATION OF THE PROPOSED TECHNIQUE FOR

CONSTRUCTING CUDA PROGRAMS

In this section, we illustrate the application of the proposed
technique to matrix multiplication and N-body problems. The
time measurements were collected on the hardware system
composed of Intel Core i5-3570 CPU (4 cores, 3.8 GHz) with
16 GB of host memory and NVIDIA Tesla M2050 GPU
(3 GB of global memory, 384 bits memory bandwidth,
connected through PCIe2.0 x8) running Ubuntu 16.04
host operating system.

A semi-automatic source-to-source code transformation
tool based on the TermWare rewriting system [10] aiming to
assist in constructing a new concurrent program was
implemented. It takes the initial loop marked with pragmas,
applies the transformations (3), and provides a template of the
code of a new loop to be substituted. The remaining actions
include serialization and deserialization routines
implementation; the kernel could be implemented as well as
generated by another tool and adapted in place.

The algorithm of the initial sequential matrix
multiplication program involved a three-dimensional loop
nest. It was transformed using the proposed technique and
C-to-CUDA compilers PPCG and Par4All. Both of the
programs generated by PPCG and P4A showed comparable
results. After applying the slicing technique, the initial
matrices were split into submatrices. The internal loop

subdivision parameter 0S was set to 1, the roles of parameters

2S and 1S is adjusting submatrices width. The schema with

double data exchange buffering and two CPU threads were
used. Even not involving GPU, adjusting the slicing number
allowed to reach about 12 times acceleration over the initial
loop due to CPU caching. For the GPU implementation, the
parameterized PPCG generated kernel was used; the source
codes of the constructed matrix multiplication program are
available at GitHub [11]. The chart in Fig. 2 shows the
constructed program’s timings and the timings of the program
obtained with PPCG relatively to the matrix dataset size.

Fig. 2. The dependency of the execution time on the size of the input data for

the concurrent PPCG-generated and constructed matrix multiplication

programs

The relative acceleration of about 430 times in comparison
to the sequential program executed on the CPU for the
datasets of square matrices of the size of 5000 5000 single-

precision floating point numbers was reached. It could be seen
from the chart, that the PPCG generated program has achieved
maximum data set size less than 300 Mb that is 10% of GPU’s
global memory available. This is because PPCG is limited to
static memory usage, thus blocking to link programs with too
large static arrays.

It is worth mentioning that involving two CPU threads is
excessive as the part of serialization and deserialization is
negligible compared to GPU kernel computation time, which
can be seen from the GPU execution profile given in Fig. 3.
Thus, involving just one thread instead won’t decrease
performance substantially, however, two concurrent threads
are required to avoid gaps in kernel launches and to gain
maximum performance from the GPU.

Fig. 3. The fragment of the profile of matrix multiplication execution

Another application examined was a predictor routine from
the N-body problem with the predictor-corrector time-
iterative [12] algorithm. The model of the system consists of a
set of particles that interact pairwise PPCG applying caused a
slowdown effect and led in about 500 times decrease in
performance in comparison to the sequential CPU
implementation. As for the constructed program with a self-
implemented kernel not involving shared memory usage, the
relative CPU to GPU acceleration at the selected data size
range reached 13 times. The plot in Fig. 4 shows the
dependency of sequential CPU and transformed GPU
programs execution time on the data size that is scaled by the
alteration of the number of particles N . The timings are

measured for the one time-step of the prediction routine. The
memory limit was not reached as it would take approximately
30 years to process one time-step of the algorithm for a fully
loaded GPU that was used in the experiment, however, the
applicability of the technique is confirmed.

Fig. 4. The dependency of the execution time on the size of the input data for

the sequential and constructed concurrent N-body programs

Thus, the difference in the constructed multiplication and
N-body programs consists in the kernel, serializer, and
deserializer implementation while the control flow structure
remains identical.

V. CONCLUSIONS

We proposed a technique for semi-automated
parallelization of nested loops for graphics processing units.
The advantage of the proposed method is the ability to process
big data volumes that exceed the GPU memory size and
simultaneously use several GPUs. The usage of the technique
is illustrated on the development of CUDA programs for
solving matrix multiplication and N-body problems. An
assistant semi-automatic code transformation tool was
implemented. Further work relates to developing unified
methods and tools in loop parallelization.

REFERENCES

[1] M. J. Harris, Real-time cloud simulation and rendering. A dissertation
for a Ph.D. degree in the department of computer science, Chapel Hill,
NC: University of North Carolina, 2003.

[2] “PIPS: Automatic Parallelizer and Code Transformation Framework”
[Online] Available from: http://pips4u.org [Accessed: 17 August 2020]

[3] S. Verdoolaege, J. C. Juega, A. Cohen, J. I. G´omez, C. Tenllado, and
F. Catthoor, “Polyhedral parallel code generation for CUDA,” ACM
Trans. Architec. Code Optim., vol. 9, no. 4, art. 54, pp. 1-23, 2013.

[4] T. Grosser, A. Cohen, P. H. J. Kelly, J. Ramanujam, P. Sadayappan, and
S. Verdoolaege, “Split tiling for GPUs: automatic parallelization using
trapezoidal tiles,” Proc. 6th Workshop on General Purpose Processor
Using Graphics Processing Units, pp. 24-31, 2013.

[5] P. Di, D. Ye, Y. Su, Y. Sui, and J. Xue, “Automatic parallelization of
tiled loop nests with enhanced fine-grained parallelism on GPUs,”
Proc. 41st International Conference on Parallel Processing, pp. 1-12,
2012.

[6] A. Doroshenko, O. Beketov, M. Bondarenko, and O. Yatsenko,
“Automated design of parallel programs for heterogeneous platforms
using algebra-algorithmic tools”, in ICTERI 2019, CCIS, vol. 1175,
V. Ermolayev, F. Mallet, V. Yakovyna, H. Mayr, and A. Spivakovsky,
Eds. Cham: Springer, 2020, pp. 3-23.

[7] A. Doroshenko and O. Beketov, “Large-scale loops parallelization for
GPU accelerators,” Proc. 15th Int. Conf. “ICT in Education, Research
and Industrial Applications. Integration, Harmonization and Knowledge
Transfer” (ICTERI 2019), pp. 82-89, 2019.

[8] M. Wolfe, “More iteration space tiling,” Proc. 1989 ACM/IEEE
Conference on Supercomputing, pp. 655-664, 1989.

[9] A. J. Bernstein, “Analysis of programs for parallel processing,” IEEE
transactions on electronic computers, vol. EC-15, no. 5, pp. 757-763,
1966.

[10] A. Doroshenko and R. Shevchenko, “A rewriting framework for rule-
based programming dynamic applications,” Fundamenta Informaticae,
vol. 72, no. 1-3, pp. 95-108, 2006.

[11] “GitHub Repository” [Online] Available from: https://github.com/o-
beketov/matmul [Accessed: 17 August 2020]

[12] S. J. Aarseth, Gravitational N-body Simulations. Cambridge: Cambridge
University Press, 2003.

