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Abstract—The technique for semi-automatic parallelization of 

loop operators is proposed. It is based on loop tiling and data 

serialization and uses rewriting rules to transform programs. The 

technique allows to extend GPU capabilities to deal with big data 

volumes that outfit internal GPU memory capacity. It can be 

applied to utilize clusters consisting of several GPUs. 

Applicability criterion is specified and a semi-automatic proof-of-

concept software tool is implemented. The results of the 

experiment demonstrating the feasibility of the proposed 

technique are given. 

Index Terms—big data, CUDA, general-purpose computing on 

graphics processing units, loop optimization, parallelization 

methods 

I. INTRODUCTION 

In scientific world, as well as in business, there is an 
enormous amount of digital data that are referred to as big 
data, and the volume of these data swiftly grows every day. 
They come from numerical scientific experiments and 
observations and require storage, processing, and analysis, 
which can be done using high-performance computing 
systems. The complication of computing problems and 
improvements of hardware, on the other hand, resulted in the 
appearance of multiprocessor systems, that are naturally suited 
to employ parallel algorithms. Nowadays, many new parallel 
platforms are emerging, one of the most popular is the 
direction using graphics processing units (GPUs) as general-
purpose computing devices. As for now, GPUs have the 
highest level of parallelism compared to other computing 
devices. These devices can provide big performance boosts. 
However, efficient programming of GPUs is not an easy task. 
Developers should know many technical details about GPU 
architecture.  

The interest in graphics accelerators is ever-growing due to 
their superior performance compared to conventional 
processors, availability, and low energy consumption. 
However, the development of appropriate tools is still a 
problem. In particular, we consider the problem of modeling 
parallel systems with heterogeneous components that contain 
both CPU and GPU. Along with spreading of GPGPU 
technology [1] that allows the employment of graphics 
accelerators for solving computational tasks, new challenges 
arise. As far as GPU is not a standalone device and is managed 

by a host operating unit, it should be considered within the 
context of heterogeneous computational platforms. 
Composing programs for such platforms demands knowledge 
in architecture and specific programming tools. Generally, 
concurrent software development passes through the stage of 
sequential implementation that becomes a starting point for 
further platform-dependent and hardware environment specific 
implementations. 

Existing automatic code parallelizing tools [2–5] don’t 
account for the limited amount of GPU’s onboard memory 
space, while real-life problems demand huge amounts of data 
to be processed. To embrace those cases of massive 
computational tasks that involve big data, we propose a 
technique that provides the ability to rip the loop and to split 
the data and calculation operations. 

This paper considers the problem of automated 
parallelizing transformation of embedded loops for the target 
platform of a computing system of heterogeneous architecture 
that includes graphic processors. A technique for a semi-
automated parallelization method of nested loops for graphics 
processors is proposed. The technique that allows to extend 
GPU capabilities to deal with data volumes that outfit internal 
GPU’s memory capacity is revealed and proved. The 
technique involves loop tiling and data serialization and can be 
applied to utilize clusters consisting of several GPUs [6, 7]. A 
formal transformation of the computation loop nest that allows 
the transition from a sequential algorithm to a parallel is 
applied to solving matrix multiplication and N-body problems. 

II. FORMAL MODEL OF LOOP TRANSFORMATION 

Loop parallelization is a long-standing problem of 
computational programming. Loops give a fair parallelization 
opportunity for numerous scientific modeling problems that 
involve numerical methods. This section introduces the idea of 
loop transformation. 

Let us consider a set of finite sets kI , 0 k N  , each set 

consists of an ordered set of elements, i.e.  

,0 ,1 ,# 1{ }
kk k k k k k k II i i i   , 



where k  is a partial order over the set kI , # kI  indicates the 

number of elements of the set kI . 

The for  loop operator 

  : ( )k k kfor i I S i  

is a form of notation of the following sequence 

,0 ,1 ,# 1( ),  ( ), , ({ )}
kk k k IS i S i S i  , 

where ( )kS i  is an expression containing the dependence on 

the loop iterator ki . 

Let D  be a set of data with a subjective mapping 
:T D D  over it. Let us also introduce subjective mappings 

:p I D  and :q I D . 

Let us consider the pairs of elements of the set D  of the 

form 2( , )a v D , for those elements a D , for which there 

exist preimages of the set I  under mappings p  and q , 

respectively. Sets of all such pairs are denoted as 

2{( , ) | : ( ) |  ( )}P a v i I p i a D v T a D        

and 

2{( , ) | : ( ) |  ( )}Q b w i I q i b D w T b D       . 

Hereinafter, the pair 2( , )a v D  will be referred to as a 

data cell, a D  a cell address, and v D  a cell value. 

Mapping T  provides a cell value by cell address. The set of 
all cells involved in the calculations is called memory. 

Let :F I D D  is the transformation mapping of the 

data set. Let us consider the nested loop of the following form: 



1 1

0 0

  :

     :

      ...

           :

             ( ) : ( , ( )),   

N N

N N

for i I

for i I

for i I
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 
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



  

 

where symbol 0 1 0{ , , , }N Ni i i i I I I      denotes a 

vector of iterators. The number of operators involved in the 
loop is called nesting depth. 

Nesting depth for the loop (1) is equal to 1N  . Sets P  

and Q  are called a set of initial data and a set of final data of 

the loop (1), respectively. 

The loop iteration is a calculation that executes a loop for a 

certain fixed value of the vector of iterators i , which acquires 

value from the set 0 NI I . We assume that iterations are 

independent by data: 

   , ,  : ( ) ( ),  ( ) ( )i j I i j p i q j q i q j      

i.e. no iteration of the loop changes the initial data of other 
iterations, and different iterations do not change the values of 
the same cells. 

Having numbered the elements of the sets kI  according to 

the lexicographic order, let us proceed to the loop with a linear 
counter by performing the following substitution: 

      0   #N N n nfor i I for i I   , 

where counter ni  changes with a unit step. Let us perform 

decomposition of the loop nest. To achieve this, at first we 
perform the following substitution for each for  operator: 

  0   #

  0   :

        (# , ) min (( 1) (# , ), ),

n n

n n

n n n n n n n n

for i I

for s S

for s L I S i s L I S S

 

 

  

 

where 

 0, mod( ,  )  1 a b

a
L a b

b


 
   

 
, 

     denotes the integer part of a quotient, δ  is Kronecker 

symbol, nS  is the desired number of steps to subdivide the 

loop, 1   #n nS I  . This transformation is commonly known 

as loop tiling [8]. After subdivision of subloops and 
regrouping, the loop takes the form, in which an internal loop 
is similar to the initial loop but of a reduced scale. We keep 
internal 1N   loops intact and group outer loops: 
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Here ( )g e  is a mapping that restores the vector of 

counters i


 and is constructed in the following way: 
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The obtained loop (3) maintains the sequence of the vector 
of counters equal to the sequence produced by the initial 
loop (1). 

Let’s denote the inner 1N   loops of the cycle (2) along 

with )(eg  as a )(ekernel . We intend to delegate the kernel 

execution to GPU and to run it concurrently thus diminishing 
the depth of the inner loop nest. As the GPU’s memory space 
is isolated from the host’s device one, we introduce serialize 
operation that is to prepare the input data required to perform 
calculations for the step e and deserialize operation to store 
the output data processed by GPU. The further implementation 
of these procedures is out of our scope and depends on the 
particular problem. Finally, we get: 



0

    ( , , );

    2 ( );
   

    ( , , );

    2 ( );

    ( ,

0 :

, );

N

i
i

serialize e inputData dataPull

transfer device inputData
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f
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t

e S
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

 
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Iterations of the loop (4) can be distributed over 
concurrently running threads through involving several 
additional data exchange buffers. This approach could be 
applied to any distributed memory computational system, e.g. 
GPU cluster or heterogeneous cluster of any other 
computation empowered devices. To preserve equivalence in a 
sense of output results equality for the same given input data, 
Bernstein’s [9] conditions must be met. This roughly means 
that iterations should not overwrite the other’s iterations input 

data and should store their output data apart. The set of kS  

( Nk 0 ) is the transformation’s tunable parameters that 

are chosen in a way to satisfy Bernstein’s conditions and to 
optimize processing time that is to find a trade-off on time 
spent on data preparation, transfer, and kernel execution. 
These timings depend on the input and output data load size 
which is restricted by the total available amount of GPU’s 
memory and hardware configuration parameters, such as input 
and output memory transfer rate and GPU compute 
capabilities. 

The loop of the initial form is a form of notation of the 
data transformation sequence, given by the mapping F . 
However, a loop in this form is not suitable for execution by a 
parallel computing device, because for  operator defines a 

sequential computational procedure for individual iterations. 
To perform the parallelization of the loop, it is necessary to 
properly distribute the iterations and corresponding data 
between the threads. The loop in the parallel form will be 
equivalent to the original loop if the above condition (2) holds. 
Let us prove this statement. 

Let there is a procedure P  performing data operations. Let 
us classify the memory cells used by this set of commands 
according to the mode of their use: 

1) ,  W W D  denotes a set of cells which are only read, 

i.e. :d W   

 : ( ) ;i I q i d    

 : ( ) ;i I p i d    

2) ,  X X D  is a set of cells which are only written, i.e. 

:d X   

 : ( ) ;i I q i d    

 : ( ) ;i I p i d    

3) ,  Y Y D  is a set of cells which are read and then 

written: 

 : , ,  :    ( ) ,  ( ) ;d Y i j I i j p i d q j d       

4) ,  Z Z D  is a set of cells which are written and then 

read: 

: , ,  :    ( ) ,  ( )d Z i j I i j q i d p j d      . 

Let there are three procedures 1P , 2P  and 3P , the 

corresponding indices denote their sets of cells. Consider two 
algorithms that perform these procedures: the first calls the 
procedures sequentially one after the other, and the second 
performs the first two procedures simultaneously, and then the 
third. According to Bernstein [9], the following conditions 
must be met in order for the results of sequential and parallel 
algorithm calculations to coincide: 

   1 1 1 2 2 2W Y Z X Y Z      , 

that is, those memory cells that are read by the first procedure 
do not intersect with those cells that are written by the second 
procedure; condition symmetric to the previous one 

   1 1 1 2 2 2X Y Z W Y Z      , 

and 

 1 2 3 3X X W Y    , 

that is, those cells that are used by both the first and the 
second recording procedures simultaneously will not be 
subsequently read without preliminary rewriting. 
Summarizing Bernstein’s conditions for a set of procedures 

iP , 0 i C  , we obtain: 



 0 ,i j C   : 

( ) ( )i i i j j jW Y Z X Y Z      , 

( ) ( )i i i j j jX Y Z W Y Z      , 

( )j j C CX X W Y    . 

On the one hand, 

( ) : ( )d W Y Z i I p i d      . 

On the other hand, 

( ) : ( )d W Y Z i I q i d      . 

Therefore, the first two Bernstein conditions are equivalent 
to the following: 

  , : ( ) ( )i j I p i q j   . 

Since condition (8) requires 

  , : ( ) ( )i j I p i p j   , 

then 

i jX X  , 

and therefore the condition (9) also holds. Thus, conditions 
(7), (8) are equivalent to the combined conditions of Bernstein 
and ensure that the memory status of the device does not 
depend on the order of operations. Therefore, the statement is 
true. 

III. PROGRAM EXECUTION FLOW 

In this section, we observe an execution flow of a program 
parallelized with the help of the proposed method. Consider 
the computing node that consists of one multicore CPU and 
one GPU. Modern GPUs support direct memory access 
technology thus allowing to carry out data transfer and kernel 
execution asynchronously. To optimize the data exchange 
process, dual buffering is involved. Four buffers at both host 
and device sides are involved — two for the input and two for 
the output data exchange. On the host side, computations are 
made by two threads executing kernel , serialize and 

deserialize  procedures simultaneously. One of them 

serializes the input data and fills the input data buffer, then 
transmits the buffer to the GPU and launches the kernel, and 
the other receives output data buffer from GPU and  
deserializes it. Besides the calculations, GPU carries out 
bidirectional data transfers through the asynchronous data 
transfer mechanism. Computations are performed in three 
stages — initial, cyclic and finalizing. 

At the starting point, data buffers are empty and GPU 
waits for the data transfer. It doesn’t matter what thread will 
carry out the initial step, as all the operations are executed 

sequentially and asynchronous transfer mode is not involved. 
At the initial step, CPU serializes input data buffers of the first 
two iterations and transfers the buffer containing the first 
iteration data to the accelerator. 

After the initial step, the cyclic stage starts. The execution 
flow is shown in Fig. 1. The iteration number is given after the 
buffer’s name. One step of the loop is divided into odd and 
even parts. Both odd and even parts of the first step skip 
deserialization as the host output buffers are empty yet. At the 
odd part of the first step, the accelerator-to-host transfer is 
omitted too. Meanwhile, the accelerator performs 
computations over a current buffer, host threads fetch data 
buffer from a previous step, deserialize penultimate step 
buffer, send input data buffer, and serialize buffer for the next 
step. In one step, two kernel launches are executed. After each 
part (odd or even) is finished, the processes are synchronized. 
Two final steps depend on the actual number of kernel 
launches. If the number of kernel launches is odd, the final 
step of the cyclic part excludes an even part and does not 
involve serialization and host-to-accelerator transfer, and the 
even part of the penultimate step skips serialization. 
Otherwise, if the number of launches is even, the last loop step 
is full, but the even part of the final step omits serialization. 
The final step deserializes output data buffer transferred at the 
last loop step and then fetches and deserializes the final output 
data buffer consequently finishing the computations. 

 
Fig. 1. Execution flow diagram of the cyclic stage of the concurrent program 
for the system of one accelerator and two control flow threads with four data 
exchange buffers 



IV. APPLICATION OF THE PROPOSED TECHNIQUE FOR 

CONSTRUCTING CUDA PROGRAMS 

In this section, we illustrate the application of the proposed 
technique to matrix multiplication and N-body problems. The 
time measurements were collected on the hardware system 
composed of Intel Core i5-3570 CPU (4 cores, 3.8 GHz) with 
16 GB of host memory and NVIDIA Tesla M2050 GPU 
(3 GB of global memory, 384 bits memory bandwidth, 
connected through PCIe2.0 x8) running Ubuntu 16.04 
host operating system. 

A semi-automatic source-to-source code transformation 
tool based on the TermWare rewriting system [10] aiming to 
assist in constructing a new concurrent program was 
implemented. It takes the initial loop marked with pragmas, 
applies the transformations (3), and provides a template of the 
code of a new loop to be substituted. The remaining actions 
include serialization and deserialization routines 
implementation; the kernel could be implemented as well as 
generated by another tool and adapted in place. 

The algorithm of the initial sequential matrix 
multiplication program involved a three-dimensional loop 
nest. It was transformed using the proposed technique and 
C-to-CUDA compilers PPCG and Par4All. Both of the 
programs generated by PPCG and P4A showed comparable 
results. After applying the slicing technique, the initial 
matrices were split into submatrices. The internal loop 

subdivision parameter 0S  was set to 1, the roles of parameters 

2S  and 1S  is adjusting submatrices width. The schema with 

double data exchange buffering and two CPU threads were 
used. Even not involving GPU, adjusting the slicing number 
allowed to reach about 12 times acceleration over the initial 
loop due to CPU caching. For the GPU implementation, the 
parameterized PPCG generated kernel was used; the source 
codes of the constructed matrix multiplication program are 
available at GitHub [11]. The chart in Fig. 2 shows the 
constructed program’s timings and the timings of the program 
obtained with PPCG relatively to the matrix dataset size.  

 
Fig. 2. The dependency of the execution time on the size of the input data for 

the concurrent PPCG-generated and constructed matrix multiplication 

programs 

The relative acceleration of about 430 times in comparison 
to the sequential program executed on the CPU for the 
datasets of square matrices of the size of 5000 5000  single-

precision floating point numbers was reached. It could be seen 
from the chart, that the PPCG generated program has achieved 
maximum data set size less than 300 Mb that is 10% of GPU’s 
global memory available. This is because PPCG is limited to 
static memory usage, thus blocking to link programs with too 
large static arrays. 

It is worth mentioning that involving two CPU threads is 
excessive as the part of serialization and deserialization is 
negligible compared to GPU kernel computation time, which 
can be seen from the GPU execution profile given in Fig. 3. 
Thus, involving just one thread instead won’t decrease 
performance substantially, however, two concurrent threads 
are required to avoid gaps in kernel launches and to gain 
maximum performance from the GPU. 

 
Fig. 3. The fragment of the profile of matrix multiplication execution 

Another application examined was a predictor routine from 
the N-body problem with the predictor-corrector time-
iterative [12] algorithm. The model of the system consists of a 
set of particles that interact pairwise PPCG applying caused a 
slowdown effect and led in about 500 times decrease in 
performance in comparison to the sequential CPU 
implementation. As for the constructed program with a self-
implemented kernel not involving shared memory usage, the 
relative CPU to GPU acceleration at the selected data size 
range reached 13 times. The plot in Fig. 4 shows the 
dependency of sequential CPU and transformed GPU 
programs execution time on the data size that is scaled by the 
alteration of the number of particles N . The timings are 

measured for the one time-step of the prediction routine. The 
memory limit was not reached as it would take approximately 
30 years to process one time-step of the algorithm for a fully 
loaded GPU that was used in the experiment, however, the 
applicability of the technique is confirmed. 

 

Fig. 4. The dependency of the execution time on the size of the input data for 

the sequential and constructed concurrent N-body programs 



Thus, the difference in the constructed multiplication and 
N-body programs consists in the kernel, serializer, and 
deserializer implementation while the control flow structure 
remains identical. 

V. CONCLUSIONS 

We proposed a technique for semi-automated 
parallelization of nested loops for graphics processing units. 
The advantage of the proposed method is the ability to process 
big data volumes that exceed the GPU memory size and 
simultaneously use several GPUs. The usage of the technique 
is illustrated on the development of CUDA programs for 
solving matrix multiplication and N-body problems. An 
assistant semi-automatic code transformation tool was 
implemented. Further work relates to developing unified 
methods and tools in loop parallelization. 
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